IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i13d10.1007_s11269-022-03305-y.html
   My bibliography  Save this article

Correction of Reservoir Runoff Forecast Based on Multi-scenario Division and Multi Models

Author

Listed:
  • Suiling Wang

    (Huazhong University of Science and Technology)

  • Zhiqiang Jiang

    (Huazhong University of Science and Technology)

  • Hairong Zhang

    (China Yangtze Power Co., Ltd.)

Abstract

Accurate runoff forecast is very important for reservoir operation. In view of the shortcomings of the existing correction models for runoff forecast, including the influence of the difference of external factors on the forecast results is not considered, and the optimal situation adaptation of different forecast models is not considered, three models, i.e., long and short-term memory neural network model (LSTM), gaussian process regression model (GPR) and support vector machine regression model (SVR), are used to forecast the relative errors of runoff forecast under different scenarios in this paper. The classification of forecast scenarios is determined based on factors such as rainfall, inflow, and foresight period, and two scenario sets are given, i.e., 12 forecast scenarios and 24 forecast scenarios. Then, a multi-model coupled runoff forecast correction method considering forecast error and forecast scenario is proposed. Through the case study of the Three Gorges Reservoir (TGR), it is found that, when the analysis is carried out based on the forecast period, the SVR model should be used for forecast correction when the foresight period is 1–5 days, and the LSTM model should be used for forecast correction when the foresight period is 6 days. The application effect of SVR and LSTM is better than GPR in the scenario set of 12 forecast scenarios. LSTM model has the highest accuracy of forecast correction in the scenario set of 24 forecast scenarios, and the mean value of the coefficient of certainty (R2) changes from 0.919 of 12 forecast scenarios to 0.931 of 24 forecast scenarios, increasing by 1.31%. The mean value of mean relative error (MRE) changes from 6.80% of 12 forecast scenarios to 5.64% of 24 forecast scenarios, a decrease of 17.06%. Finally, the best model adaptation table corresponding to different forecast scenarios of TGR is established, which has an important guiding role in the actual runoff forecast of TGR.

Suggested Citation

  • Suiling Wang & Zhiqiang Jiang & Hairong Zhang, 2022. "Correction of Reservoir Runoff Forecast Based on Multi-scenario Division and Multi Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5277-5296, October.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03305-y
    DOI: 10.1007/s11269-022-03305-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03305-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03305-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    2. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    3. Juliana Mendes & Rodrigo Maia, 2016. "Hydrologic Modelling Calibration for Operational Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5671-5685, December.
    4. Seyed Akrami & Ahmed El-Shafie & Othman Jaafar, 2013. "Improving Rainfall Forecasting Efficiency Using Modified Adaptive Neuro-Fuzzy Inference System (MANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3507-3523, July.
    5. Tomasz Ciechulski & Stanisław Osowski, 2021. "High Precision LSTM Model for Short-Time Load Forecasting in Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    3. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    4. Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.
    5. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    6. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    7. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    8. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    9. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    10. Wenna Zhao & Guoxing Mu & Yanfang Zhu & Limei Xu & Deliang Zhang & Hongwei Huang, 2023. "Research on Electric Load Forecasting and User Benefit Maximization Under Demand-Side Response," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-20, January.
    11. Rui Yan & Yanpeng Cai & Chunhui Li & Xuan Wang & Qiang Liu, 2019. "Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    12. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    13. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    14. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    15. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
    16. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
    17. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    18. Qingwen Ma & Sihan Liu & Xinyu Fan & Chen Chai & Yangyang Wang & Ke Yang, 2020. "A Time Series Prediction Model of Foundation Pit Deformation Based on Empirical Wavelet Transform and NARX Network," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    19. Goudarzi, Arman & Viray, Z.N.C. & Siano, Pierluigi & Swanson, Andrew G. & Coller, John V. & Kazemi, Mehdi, 2017. "A probabilistic determination of required reserve levels in an energy and reserve co-optimized electricity market with variable generation," Energy, Elsevier, vol. 130(C), pages 258-275.
    20. Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03305-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.