IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2750-d552368.html
   My bibliography  Save this article

Increased Internal Combustion Engine Efficiency with Optimized Valve Timings in Extended Stroke Operation

Author

Listed:
  • Andyn Omanovic

    (Automotive Powertrain Technologies Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland
    Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland)

  • Norbert Zsiga

    (Automotive Powertrain Technologies Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland)

  • Patrik Soltic

    (Automotive Powertrain Technologies Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dubendorf, Switzerland)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

Spark-ignited internal combustion engines are known to exhibit a decreased brake efficiency in part-load operation. Similarly to cylinder deactivation, the x-stroke operation presented in this paper is an adjustable form of skip-cycle operation. It is an effective measure to increase the efficiency of an internal combustion engine, which has to be equipped with a variable valve train to enable this feature. This paper presents an optimization procedure for the exhaust valve timings applicable to any valid stroke operation number greater than four. In the first part, the gas spring operation, during which all gas exchange valves are closed, is explained, as well as how it affects the indicated efficiency and the blow-by mass flow. In the second part, a simulation model with variable valve timings, parameterized with measurement data obtained on the engine test, is used to find the optimal valve timings. We show that in 12-stroke operation and with a cylinder load of 5 Nm, an indicated efficiency of 34.3% is achieved. Preloading the gas spring with residual gas prevents oil suction and thus helps to reduce hydrocarbon emissions. Measurements of load variations in 4-, 8-, and 12-stroke operations show that by applying an x-stroke operation, the indicated efficiency remains high and the center of combustion remains optimal in the range of significantly lower torque outputs.

Suggested Citation

  • Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Increased Internal Combustion Engine Efficiency with Optimized Valve Timings in Extended Stroke Operation," Energies, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2750-:d:552368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    2. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    3. Conklin, James C. & Szybist, James P., 2010. "A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery," Energy, Elsevier, vol. 35(4), pages 1658-1664.
    4. Mamdouh Alshammari & Fuhaid Alshammari & Apostolos Pesyridis, 2019. "Electric Boosting and Energy Recovery Systems for Engine Downsizing," Energies, MDPI, vol. 12(24), pages 1-33, December.
    5. Michelangelo Balmelli & Norbert Zsiga & Laura Merotto & Patrik Soltic, 2020. "Effect of the Intake Valve Lift and Closing Angle on Part Load Efficiency of a Spark Ignition Engine," Energies, MDPI, vol. 13(7), pages 1-16, April.
    6. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.
    7. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Wittek, Karsten, 2020. "Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clemens Gößnitzer & Shawn Givler, 2021. "A New Method to Determine the Impact of Individual Field Quantities on Cycle-to-Cycle Variations in a Spark-Ignited Gas Engine," Energies, MDPI, vol. 14(14), pages 1-14, July.
    2. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    2. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    3. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    4. Serrano, J.R. & Arnau, F.J. & Bares, P. & Gomez-Vilanova, A. & Garrido-Requena, J. & Luna-Blanca, M.J. & Contreras-Anguita, F.J., 2021. "Analysis of a novel concept of 2-stroke rod-less opposed pistons engine (2S-ROPE): Testing, modelling, and forward potential," Applied Energy, Elsevier, vol. 282(PA).
    5. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    6. Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
    7. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    8. Jacopo Zembi & Michele Battistoni & Francesco Ranuzzi & Nicolò Cavina & Matteo De Cesare, 2019. "CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions," Energies, MDPI, vol. 12(18), pages 1-22, September.
    9. Shen, Kai & Xu, Zishun & Zhu, Zhongpan & Yang, Linsen, 2022. "Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine," Energy, Elsevier, vol. 244(PB).
    10. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    11. Rahman, Ataur & Razzak, Fadhilah & Afroz, Rafia & AKM, Mohiuddin & Hawlader, MNA, 2015. "Power generation from waste of IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 382-395.
    12. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    13. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    14. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    15. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    16. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    17. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.
    18. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    19. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    20. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2750-:d:552368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.