IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4636-d294918.html
   My bibliography  Save this article

Electric Boosting and Energy Recovery Systems for Engine Downsizing

Author

Listed:
  • Mamdouh Alshammari

    (Centre of Advanced Powertrain and Fuels (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Middlesex UB8 3PH, UK
    Department of Mechanical Engineering, University of Hai’l, Hail 55476, Saudi Arabia)

  • Fuhaid Alshammari

    (Department of Mechanical Engineering, University of Hai’l, Hail 55476, Saudi Arabia)

  • Apostolos Pesyridis

    (Centre of Advanced Powertrain and Fuels (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Middlesex UB8 3PH, UK)

Abstract

Due to the increasing demand for better fuel economy and increasingly stringent emissions regulations, engine manufacturers have paid attention towards engine downsizing as the most suitable technology to meet these requirements. This study sheds light on the technology currently available or under development that enables engine downsizing in passenger cars. Pros and cons, and any recently published literature of these systems, will be considered. The study clearly shows that no certain boosting method is superior. Selection of the best boosting method depends largely on the application and complexity of the system.

Suggested Citation

  • Mamdouh Alshammari & Fuhaid Alshammari & Apostolos Pesyridis, 2019. "Electric Boosting and Energy Recovery Systems for Engine Downsizing," Energies, MDPI, vol. 12(24), pages 1-33, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4636-:d:294918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omer Faruk Atac & Jeong-Eui Yun & Taehyun Noh, 2018. "Aerodynamic Design Optimization of a Micro Radial Compressor of a Turbocharger," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Gunnar Latz & Olof Erlandsson & Thomas Skåre & Arnaud Contet & Sven Andersson & Karin Munch, 2016. "Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine," Energies, MDPI, vol. 9(7), pages 1-18, June.
    3. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    4. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    6. Arnaud Legros & Ludovic Guillaume & Mouad Diny & Hamid Zaïdi & Vincent Lemort, 2014. "Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle," Energies, MDPI, vol. 7(8), pages 1-18, August.
    7. Mohammad Omidi & Shu-Jie Liu & Soheil Mohtaram & Hui-Tian Lu & Hong-Chao Zhang, 2019. "Improving Centrifugal Compressor Performance by Optimizing the Design of Impellers Using Genetic Algorithm and Computational Fluid Dynamics Methods," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Omar Tiseira Izaguirre & Roberto Navarro García & Lukas Benjamin Inhestern & Natalia Hervás Gómez, 2020. "Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Emiliano Pipitone & Salvatore Caltabellotta, 2021. "Efficiency Advantages of the Separated Electric Compound Propulsion System for CNG Hybrid Vehicles," Energies, MDPI, vol. 14(24), pages 1-31, December.
    3. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    4. Fuhaid Alshammari & Apostolos Pesyridis & Mohamed Elashmawy, 2020. "Generation of 3D Turbine Blades for Automotive Organic Rankine Cycles: Mathematical and Computational Perspectives," Mathematics, MDPI, vol. 9(1), pages 1-30, December.
    5. Francesco Madaro & Iman Mehdipour & Antonio Caricato & Francesco Guido & Francesco Rizzi & Antonio Paolo Carlucci & Massimo De Vittorio, 2020. "Available Energy in Cars’ Exhaust System for IoT Remote Exhaust Gas Sensor and Piezoelectric Harvesting," Energies, MDPI, vol. 13(16), pages 1-15, August.
    6. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Increased Internal Combustion Engine Efficiency with Optimized Valve Timings in Extended Stroke Operation," Energies, MDPI, vol. 14(10), pages 1-24, May.
    7. Carlo Cravero & Philippe Joe Leutcha & Davide Marsano, 2022. "Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits," Energies, MDPI, vol. 15(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).
    2. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    3. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
    4. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    6. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    7. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    8. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    9. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    10. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    11. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.
    12. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    13. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    14. Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
    15. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & Montoro, L. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2017. "Transient behavior under a normalized driving cycle of an automotive thermoelectric generator," Applied Energy, Elsevier, vol. 206(C), pages 1282-1296.
    16. Muhammad Saeed & Abdallah S. Berrouk & Burhani M. Burhani & Ahmed M. Alatyar & Yasser F. Al Wahedi, 2021. "Turbine Design and Optimization for a Supercritical CO 2 Cycle Using a Multifaceted Approach Based on Deep Neural Network," Energies, MDPI, vol. 14(22), pages 1-27, November.
    17. Li, Zhi & Wang, Lei & Jiang, Ruicheng & Wang, Bingzheng & Yu, Xiaonan & Huang, Rui & Yu, Xiaoli, 2022. "Experimental investigations on dynamic performance of organic Rankine cycle integrated with latent thermal energy storage under transient engine conditions," Energy, Elsevier, vol. 246(C).
    18. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    19. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    20. Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4636-:d:294918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.