IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000792.html
   My bibliography  Save this article

Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine

Author

Listed:
  • Shen, Kai
  • Xu, Zishun
  • Zhu, Zhongpan
  • Yang, Linsen

Abstract

LP-EGR and turbocharging can improve thermal efficiency, but its specific mechanism needs to be further studied from the energy conversion. The fast response characteristic of electric supercharger can make up for turbine lag. The effect of electric supercharger on the steady state and transient characteristics of a LP-EGR turbocharged engine are investigated. Under the condition of 1500 r·min−1 and 14 bar, the electric supercharger can increase the EGR rate from 5% to 30%. The introduction of exhaust gas can increase the intake volume and reduce the pumping losses. The increase of turbocharger power indicates the reduction of exhaust energy losses. The decrease of combustion temperature optimizes the combustion phase, increases the constant volume degree of combustion and reduces the heat transfer losses. The application of EGR improves the fuel economy by 5%. For emission, low temperature combustion and low oxygen content reduce NOx emission by 80%. Incomplete combustion losses increase THC emission. CO emission is related to excess-air coefficient, so it is basically unchanged. The electric supercharger can speed up the establishment of the intake manifold pressure. The power transient response time is shortened by 72%. The advance of torque platform improves the power performance of engine at low speed.

Suggested Citation

  • Shen, Kai & Xu, Zishun & Zhu, Zhongpan & Yang, Linsen, 2022. "Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000792
    DOI: 10.1016/j.energy.2022.123176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    2. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Wittek, Karsten, 2020. "Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine," Energy, Elsevier, vol. 195(C).
    3. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    4. Baek, Seungju & Lee, Hyeonjik & Lee, Kihyung, 2021. "Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger," Energy, Elsevier, vol. 214(C).
    5. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cruz, José Ramón Serrano & López, J. Javier & Climent, Héctor & Gómez-Vilanova, Alejandro, 2023. "Method for turbocharging and supercharging 2-stroke engines, applied to an opposed-piston new concept for hybrid powertrains," Applied Energy, Elsevier, vol. 351(C).
    2. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    3. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    2. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    3. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    4. Baek, Seungju & Lee, Sanguk & Shin, Myunghwan & Lee, Jongtae & Lee, Kihyung, 2022. "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG," Energy, Elsevier, vol. 239(PC).
    5. Galindo, José & Climent, Héctor & de la Morena, Joaquín & González-Domínguez, David & Guilain, Stéphane, 2023. "Assessment of air management strategies to improve the transient response of advanced gasoline engines operating under high EGR conditions," Energy, Elsevier, vol. 262(PB).
    6. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    7. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    8. Woo, Seungchul & Lee, Kihyung, 2022. "Development and feasibility assessment of on-board catalytic reforming system for LPG engine to produce hydrogen in the transient state," Applied Energy, Elsevier, vol. 327(C).
    9. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    10. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    11. Paolo Iodice & Enrico Fornaro & Massimo Cardone, 2022. "Hybrid Propulsion in SI Engines for New Generation Motorcycles: A Numerical-Experimental Approach to Assess Power Requirements and Emission Performance," Energies, MDPI, vol. 15(17), pages 1-13, August.
    12. Suleyman Simsek & Bulent Ozdalyan, 2018. "Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI) Engine’s Performance and Emissions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    13. Dorota Burchart-Korol & Magdalena Gazda-Grzywacz & Katarzyna Zarębska, 2020. "Research and Prospects for the Development of Alternative Fuels in the Transport Sector in Poland: A Review," Energies, MDPI, vol. 13(11), pages 1-16, June.
    14. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    15. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    16. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    17. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Moradkhani, Mohammad Amin & Hosseini, Seyyed Hossein & Song, Mengjie & Teimoori, Khalil, 2024. "Comprehensive data-driven methods for estimating the thermal conductivity of biodiesels and their blends with alcohols and fossil diesels," Renewable Energy, Elsevier, vol. 221(C).
    19. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    20. Abdullah U. Bajwa & Felix C. P. Leach & Martin H. Davy, 2023. "Prospects of Controlled Auto-Ignition Based Thermal Propulsion Units for Modern Gasoline Vehicles," Energies, MDPI, vol. 16(9), pages 1-45, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.