IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2387-d356266.html
   My bibliography  Save this article

Transient Thermal Analysis of a Li-Ion Battery Module for Electric Cars Based on Various Cooling Fan Arrangements

Author

Listed:
  • Van-Thanh Ho

    (Department of Mechanical Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Kyoungsik Chang

    (Department of Mechanical Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Sang Wook Lee

    (Department of Mechanical Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Sung Han Kim

    (Scanjet Macron, Ulsan 44988, Korea)

Abstract

This paper presents a three-dimensional modeling approach to simulate the thermal performance of a Li-ion battery module for a new urban car. A single-battery cell and a 52.3 Ah Li-ion battery module were considered, and a Newman, Tiedemann, Gu, and Kim (NTGK) model was adopted for the electrochemical modeling based on input parameters from the discharge experiment. A thermal–electrochemical coupled method was established to provide insight into the temperature variations over time under various discharge conditions. The distribution temperature of a single-battery cell was predicted accurately. Additionally, in a 5C discharge condition without a cooling system, the temperature of the battery module reached 114 °C, and the temperature difference increased to 25 °C under a 5C discharging condition. This condition led to the activation of thermal runaway and the possibility of an explosion. However, the application of a reasonable fan circulation and position reduced the maximum temperature to 49.7 °C under the 5C discharge condition. Moreover, accurate prediction of the temperature difference between cell areas during operation allowed for a clear understanding and design of an appropriate fan system.

Suggested Citation

  • Van-Thanh Ho & Kyoungsik Chang & Sang Wook Lee & Sung Han Kim, 2020. "Transient Thermal Analysis of a Li-Ion Battery Module for Electric Cars Based on Various Cooling Fan Arrangements," Energies, MDPI, vol. 13(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2387-:d:356266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    2. Jaeshin Yi & Boram Koo & Chee Burm Shin, 2014. "Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 7(11), pages 1-16, November.
    3. Seham Shahid & Martin Agelin-Chaab, 2017. "Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries," Energies, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Al Qubeissi & Ayob Mahmoud & Moustafa Al-Damook & Ali Almshahy & Zinedine Khatir & Hakan Serhad Soyhan & Raja Mazuir Raja Ahsan Shah, 2023. "Comparative Analysis of Battery Thermal Management System Using Biodiesel Fuels," Energies, MDPI, vol. 16(1), pages 1-19, January.
    2. Van-Tinh Huynh & Kyoungsik Chang & Sang-Wook Lee, 2021. "One-Dimensional and Three-Dimensional Numerical Investigations of Thermal Performance of Phase Change Materials in a Lithium-Ion Battery," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Chen & Zeyu Li & Yiming Chen & Shuming Long & Junsheng Hou & Mengxuan Song & Shuangfeng Wang, 2017. "Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study," Energies, MDPI, vol. 10(10), pages 1-22, October.
    2. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    3. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    4. Sun, Shulei & Ma, Chunyu & Wang, Xiyu & Yang, Ye & Mei, Jun, 2024. "Design and optimisation of a novel serpentine flow channel with branch structure," Energy, Elsevier, vol. 293(C).
    5. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    6. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    7. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    8. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    9. Brian Azzopardi & Abdul Hapid & Sunarto Kaleg & Sudirja & Djulia Onggo & Alexander C. Budiman, 2023. "Recent Advances in Battery Pack Polymer Composites," Energies, MDPI, vol. 16(17), pages 1-23, August.
    10. Chen, Yiming & Chen, Kai & Dong, Yuan & Wu, Xiaoling, 2022. "Bidirectional symmetrical parallel mini-channel cold plate for energy efficient cooling of large battery packs," Energy, Elsevier, vol. 242(C).
    11. Seham Shahid & Martin Agelin-Chaab, 2017. "Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries," Energies, MDPI, vol. 10(8), pages 1-17, August.
    12. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    13. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    14. Landini, S. & O’Donovan, T.S., 2021. "Novel experimental approach for the characterisation of Lithium-Ion cells performance in isothermal conditions," Energy, Elsevier, vol. 214(C).
    15. Yang Li & Zhifu Zhou & Jian Zhao & Liang Hao & Minli Bai & Yulong Li & Xuanyu Liu & Yubai Li & Yongchen Song, 2021. "Three-Dimensional Thermal Simulations of 18650 Lithium-Ion Batteries Cooled by Different Schemes under High Rate Discharging and External Shorting Conditions," Energies, MDPI, vol. 14(21), pages 1-20, October.
    16. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    17. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    18. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    19. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
    20. Hamidreza Behi & Danial Karimi & Rekabra Youssef & Mahesh Suresh Patil & Joeri Van Mierlo & Maitane Berecibar, 2021. "Comprehensive Passive Thermal Management Systems for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2387-:d:356266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.