Thermodynamic, Exergy and Environmental Impact Assessment of S-CO 2 Brayton Cycle Coupled with ORC as Bottoming Cycle
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
- Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
- Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
- Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 216(C), pages 634-648.
- Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures," Energies, MDPI, vol. 12(24), pages 1-18, December.
- Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2019. "Supercritical CO2 and air Brayton-Joule versus ORC systems for heat recovery from glass furnaces: Performance and economic evaluation," Energy, Elsevier, vol. 168(C), pages 295-309.
- Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
- Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
- Uusitalo, Antti & Ameli, Alireza & Turunen-Saaresti, Teemu, 2019. "Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery," Energy, Elsevier, vol. 167(C), pages 60-79.
- Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
- Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
- Ding, Yang & Liu, Chao & Zhang, Cheng & Xu, Xiaoxiao & Li, Qibin & Mao, Lianfei, 2018. "Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid," Energy, Elsevier, vol. 145(C), pages 52-64.
- Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
- Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea De Pascale, 2021. "Organic Rankine Cycle for Energy Recovery System," Energies, MDPI, vol. 14(17), pages 1-3, August.
- Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
- Lukas Kerpen & Achim Schmidt & Bernd Sankol, 2021. "Differentiating the Physical Optimum from the Exergetic Evaluation of a Methane Combustion Process," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
- Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
- Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
- Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
- Meriño Stand, L. & Valencia Ochoa, G. & Duarte Forero, J., 2021. "Energy and exergy assessment of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source," Renewable Energy, Elsevier, vol. 175(C), pages 119-142.
- Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
- Farid Antonio Barrozo Budes & Guillermo Valencia Ochoa & Luis Guillermo Obregon & Adriana Arango-Manrique & José Ricardo Núñez Álvarez, 2020. "Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro ® : A Case Study in Colombia," Energies, MDPI, vol. 13(7), pages 1-19, April.
- Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
- Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
- Chen, Weixiong & Qian, Yiran & Tang, Xin & Fang, Huawei & Yi, Jingwei & Liang, Tiebo & Zhao, Quanbin & Yan, Junjie, 2023. "System-component combined design and comprehensive evaluation of closed-air Brayton cycle," Energy, Elsevier, vol. 278(C).
- Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
- Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
- Xin, Tuantuan & Xu, Cheng & Yang, Yongping & Kindra, Vladimir & Rogalev, Andrey, 2023. "A new process splitting analytical method for the coal-based Allam cycle: Thermodynamic assessment and process integration," Energy, Elsevier, vol. 267(C).
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
- Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant," Resources, MDPI, vol. 9(6), pages 1-21, June.
- Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.
- S. Mohammad S. Mahmoudi & Ata D. Akbari & Marc A. Rosen, 2016. "Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle," Sustainability, MDPI, vol. 8(10), pages 1-19, October.
More about this item
Keywords
Brayton; environmental impact; exergy; life cycle analysis; ORC; performance parameters;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2259-:d:353854. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.