IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i6p75-d374352.html
   My bibliography  Save this article

Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant

Author

Listed:
  • Edwin Espinel Blanco

    (Facultad de Ingeniería, Universidad Francisco de Paula Santander, Vía Acolsure, Sede el Algodonal Ocaña, Ocaña-Norte de Santander 546552, Colombia)

  • Guillermo Valencia Ochoa

    (Programa de Ingeniería Mecánica, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia, Barranquilla 080007, Colombia)

  • Jorge Duarte Forero

    (Programa de Ingeniería Mecánica, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia, Barranquilla 080007, Colombia)

Abstract

This paper presents the application of an energy characterization method based on the ISO 50001 standard in a dry paper production plant. This plant operates using electricity, gas, and coal as energy sources. The last two energy sources are used to produce the steam and hot air used in the paper drying process. Through energy characterization, indicators such as energy baseline and consumption indicators were calculated for the plant, with which improvement opportunities were identified. These improvement opportunities were used as case studies for each energy source used and were based on the actual state of the plant. 2011 Midpoint+ ILCD method data was selected from the Ecoinvent database, using OpenLCA 1.7.0 for the energy assessment. The impact categories analyzed in this study were ecotoxicity, eutrophication of rivers and seas, climate change, and human toxicity. As a result of this work, it was found that energy-saving was possible by adjusting the production rate to a load factor of 77%, which implies a gas consumption of 1.6 kWh/kg and a value in the climate change category of 88.5 kg of CO 2 equivalent. In addition, some technological improvement opportunities were economical and environmentally evaluated as a result of the sustainable improvement strategy implemented with energy management and life cycle assessment. The study of these technological opportunities showed that in order to achieve a sustainable industrial process, it is important to take into account energy, economic, and environmental criteria in the continuous improvement of the paper production process. In addition, it is of vital importance to analyze alternatives for technological change, which have a greater impact than operational alternatives according to energy, environmental and economic criteria.

Suggested Citation

  • Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant," Resources, MDPI, vol. 9(6), pages 1-21, June.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:6:p:75-:d:374352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/6/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/6/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermo-Economic Assessment of a Gas Microturbine-Absorption Chiller Trigeneration System under Different Compressor Inlet Air Temperatures," Energies, MDPI, vol. 12(24), pages 1-18, December.
    2. Lizhong Tong & Zhongmin Pu & Jizheng Ma, 2019. "Maintenance Supplier Evaluation and Selection for Safe and Sustainable Production in the Chemical Industry: A Case Study," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    3. Guillermo Valencia Ochoa & Jhan Piero Rojas & Jorge Duarte Forero, 2020. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine," Energies, MDPI, vol. 13(1), pages 1-18, January.
    4. Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
    5. Alberto Díaz de Junguitu & Erlantz Allur, 2019. "The Adoption of Environmental Management Systems Based on ISO 14001, EMAS, and Alternative Models for SMEs: A Qualitative Empirical Study," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    6. Guillermo Valencia & Aldair Benavides & Yulineth Cárdenas, 2019. "Economic and Environmental Multiobjective Optimization of a Wind–Solar–Fuel Cell Hybrid Energy System in the Colombian Caribbean Region," Energies, MDPI, vol. 12(11), pages 1-19, June.
    7. Virgile Aymard & Valerie Botta-Genoulaz, 2017. "Normalisation in life-cycle assessment: consequences of new European factors on decision-making," Post-Print hal-01787845, HAL.
    8. P. Pablo Poveda-Orjuela & J. Carlos García-Díaz & Alexander Pulido-Rojano & Germán Cañón-Zabala, 2019. "ISO 50001: 2018 and Its Application in a Comprehensive Management System with an Energy-Performance Focus," Energies, MDPI, vol. 12(24), pages 1-33, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dora Villada-Castillo & Guillermo Valencia-Ochoa & Jorge Duarte-Forero, 2023. "Thermohydraulic and Economic Evaluation of a New Design for Printed Circuit Heat Exchangers in Supercritical CO 2 Brayton Cycle," Energies, MDPI, vol. 16(5), pages 1-24, February.
    2. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Thermodynamic, Exergy and Environmental Impact Assessment of S-CO 2 Brayton Cycle Coupled with ORC as Bottoming Cycle," Energies, MDPI, vol. 13(9), pages 1-24, May.
    3. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.
    4. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    5. Zubizarreta, Mikel & Arana-Landín, Germán & Siguenza, Waleska & Cuadrado, Jesús, 2024. "Forest certification and its impact on business management and market performance: The key role of motivations," Forest Policy and Economics, Elsevier, vol. 166(C).
    6. Liudmyla Davydenko & Nina Davydenko & Andrii Bosak & Alla Bosak & Agnieszka Deja & Tygran Dzhuguryan, 2022. "Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging," Energies, MDPI, vol. 15(10), pages 1-27, May.
    7. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    8. Guillermo Valencia Ochoa & Cesar Isaza-Roldan & Jorge Duarte Forero, 2020. "Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-22, March.
    9. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    10. Carlos Herce & Enrico Biele & Chiara Martini & Marcello Salvio & Claudia Toro, 2021. "Impact of Energy Monitoring and Management Systems on the Implementation and Planning of Energy Performance Improved Actions: An Empirical Analysis Based on Energy Audits in Italy," Energies, MDPI, vol. 14(16), pages 1-21, August.
    11. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    12. Ricardo Rebolledo-Leiva & Sofía Estévez & Diógenes Hernández & Gumersindo Feijoo & María Teresa Moreira & Sara González-García, 2024. "Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis," Resources, MDPI, vol. 13(11), pages 1-18, November.
    13. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    14. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2020. "Modeling and Simulation of a Hybrid System of Solar Panels and Wind Turbines for the Supply of Autonomous Electrical Energy to Organic Architectures," Energies, MDPI, vol. 13(18), pages 1-27, September.
    15. Farid Antonio Barrozo Budes & Guillermo Valencia Ochoa & Luis Guillermo Obregon & Adriana Arango-Manrique & José Ricardo Núñez Álvarez, 2020. "Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro ® : A Case Study in Colombia," Energies, MDPI, vol. 13(7), pages 1-19, April.
    16. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    17. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    18. Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
    19. Agnieszka Ociepa-Kubicka & Iwona Deska & Ewa Ociepa, 2021. "Organizations towards the Evaluation of Environmental Management Tools ISO 14001 and EMAS," Energies, MDPI, vol. 14(16), pages 1-19, August.
    20. Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:6:p:75-:d:374352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.