IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016013.html
   My bibliography  Save this article

Thermodynamic, exergoeconomic evaluation and optimization of S–N2O/t-N2O nuclear power cycle for the construction of the lunar base

Author

Listed:
  • Miao, Xinyu
  • Zhang, Haochun
  • Ma, Fangwei
  • Deng, MingHao
  • You, Ersheng

Abstract

With the continuous development of deep space exploration, many planetary exploration schemes and development plans regard the construction of planetary bases as an essential goal, especially the exploration of the Moon. Supercritical and transcritical nitrous oxide (N2O) cycles are compact, low-cost, efficient, and lightweight for nuclear reactors to supply power to the bases on other planets. This paper presents the thermodynamic, exergoeconomic, and mass analyses of a combined cycle consisting of a supercritical N2O recompression Brayton cycle and a transcritical N2O cycle (S–N2O/t-N2O). It is shown that under the optimal conditions, the combined thermal efficiency and exergy efficiency are 45.52 % and 60.13 %, respectively. Based on the exergy analysis, the exergy destruction mainly occurs in the reactor and main compressor. A sensitivity study shows that the split ratio, pressure ratio in the supercritical N2O cycle, main compressor inlet pressure, turbine2 inlet temperature, and turbine2 inlet pressure have significant effects on the net output work, thermal efficiency, specific mass, and levelized cost of electricity. Furthermore, multi-objective optimizations are considered to obtain the Pareto frontier solutions for different multi-objectives, and the optimal design condition is found. These findings could improve the power cycle performance for the construction of the Lunar Base.

Suggested Citation

  • Miao, Xinyu & Zhang, Haochun & Ma, Fangwei & Deng, MingHao & You, Ersheng, 2024. "Thermodynamic, exergoeconomic evaluation and optimization of S–N2O/t-N2O nuclear power cycle for the construction of the lunar base," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016013
    DOI: 10.1016/j.energy.2024.131828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.