IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p526-d1574750.html
   My bibliography  Save this article

A Detailed Review of Organic Rankine Cycles Driven by Combined Heat Sources

Author

Listed:
  • Dimitra Gonidaki

    (Department of Mechanical Engineering, School of Engineering, University of West Attica, 250 Thivon & Petrou Ralli, 12244 Athens, Greece)

  • Evangelos Bellos

    (Department of Mechanical Engineering, School of Engineering, University of West Attica, 250 Thivon & Petrou Ralli, 12244 Athens, Greece)

Abstract

The Organic Rankine Cycle (ORC) is an effective method for transforming low- and medium-grade heat into electricity that has recently gained significant attention. Several review studies in the literature are focused on working fluids, system architecture, and the individual utilization of renewable and alternative heat sources in ORCs, like solar irradiation, geothermal, biomass, and waste heat energy. However, no studies have yet investigated ORC systems driven by two of the aforementioned sources combined. This work aims to review and explore multiple aspects of hybrid ORC systems. Such systems are categorized based on source combinations and configurations, and the results regarding their thermodynamic, thermo-economic, and environmental performance are discussed. The source arrangements follow the following three main configurations: series, parallel, and heat upgrade. Most of the examined systems include solar energy as one of the sources and only four cases involve combinations of the other three sources. The reported results show that hybrid ORCs generally perform better thermodynamically compared to their respective single-source systems, exhibiting an enhancement in power production that reaches 44%. An average levelized cost of energy (LCOE) of 0.165 USD/kWh was reported for solar–geothermal plants, 0.153 USD/kWh for solar–biomass plants, and 0.100 USD/kWh for solar–waste plants. Solar–biomass plants also reported the lowest reported LCOE value of 0.098 USD/kWh. The payback periods ranged from 2.88 to 10.5 years. Further research is proposed on multiple source combinations, the in-depth analysis of the three main configurations, the integration of polygeneration systems, the incorporation of zeotropic mixture working media and experimental research on ORCs with combined sources.

Suggested Citation

  • Dimitra Gonidaki & Evangelos Bellos, 2025. "A Detailed Review of Organic Rankine Cycles Driven by Combined Heat Sources," Energies, MDPI, vol. 18(3), pages 1-43, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:526-:d:1574750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).
    2. Chen, Hao & Zhao, Li & Cong, Haifeng & Li, Xingang, 2022. "Synthesis of waste heat recovery using solar organic Rankine cycle in the separation of benzene/toluene/p-xylene process," Energy, Elsevier, vol. 255(C).
    3. Tempesti, Duccio & Manfrida, Giampaolo & Fiaschi, Daniele, 2012. "Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy," Applied Energy, Elsevier, vol. 97(C), pages 609-617.
    4. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    5. Sadeghi, Mohsen & Nemati, Arash & ghavimi, Alireza & Yari, Mortaza, 2016. "Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures," Energy, Elsevier, vol. 109(C), pages 791-802.
    6. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    7. Ptasinski, Krzysztof J. & Prins, Mark J. & Pierik, Anke, 2007. "Exergetic evaluation of biomass gasification," Energy, Elsevier, vol. 32(4), pages 568-574.
    8. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    9. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    10. Braimakis, Konstantinos & Karellas, Sotirios, 2018. "Exergetic optimization of double stage Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 149(C), pages 296-313.
    11. Cakici, Duygu Melek & Erdogan, Anil & Colpan, Can Ozgur, 2017. "Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors," Energy, Elsevier, vol. 120(C), pages 306-319.
    12. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Thermodynamic, Exergy and Environmental Impact Assessment of S-CO 2 Brayton Cycle Coupled with ORC as Bottoming Cycle," Energies, MDPI, vol. 13(9), pages 1-24, May.
    13. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Dhanasegaran, Radheesh, 2020. "Experimental study of small scale and high expansion ratio ORC for recovering high temperature waste heat," Energy, Elsevier, vol. 208(C).
    14. Tempesti, Duccio & Fiaschi, Daniele, 2013. "Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy," Energy, Elsevier, vol. 58(C), pages 45-51.
    15. Song, Jian & Wang, Yaxiong & Wang, Kai & Wang, Jiangfeng & Markides, Christos N., 2021. "Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations," Renewable Energy, Elsevier, vol. 174(C), pages 1020-1035.
    16. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    17. Zhang, H.G. & Wang, E.H. & Fan, B.Y., 2013. "A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 1504-1513.
    18. Borsukiewicz-Gozdur, Aleksandra, 2013. "Exergy analysis for maximizing power of organic Rankine cycle power plant driven by open type energy source," Energy, Elsevier, vol. 62(C), pages 73-81.
    19. Orumiyehei, Aida & Ameri, Mehran & Nobakhti, Mohammad Hasan & Zareh, Masud & Edalati, Saeed, 2022. "Transient simulation of hybridized system: Waste heat recovery system integrated to ORC and Linear Fresnel collectors from energy and exergy viewpoint," Renewable Energy, Elsevier, vol. 185(C), pages 172-186.
    20. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    21. Sorn, Kimsan & Deethayat, Thoranis & Asanakham, Attakorn & Vorayos, Nat & Kiatsiriroat, Tanongkiat, 2020. "Subcooling effect in steam heat source on irreversibility reduction during supplying heat to an organic Rankine cycle having a solar-assisted biomass boiler," Energy, Elsevier, vol. 194(C).
    22. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    23. Miao, Zheng & Zhang, Kai & Wang, Mengxiao & Xu, Jinliang, 2019. "Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle," Energy, Elsevier, vol. 167(C), pages 484-497.
    24. Al-Sulaiman, Fahad A. & Dincer, Ibrahim & Hamdullahpur, Feridun, 2012. "Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle," Energy, Elsevier, vol. 45(1), pages 975-985.
    25. Al-Nimr, Moh’d A. & Bukhari, Mohammad & Mansour, Mansour, 2017. "A combined CPV/T and ORC solar power generation system integrated with geothermal cooling and electrolyser/fuel cell storage unit," Energy, Elsevier, vol. 133(C), pages 513-524.
    26. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    27. Zhang, Siyuan & Liu, Xinxin & Liu, Liang & Pan, Xiaohui & Li, Qibin & Wang, Shukun & Jiao, Youzhou & He, Chao & Li, Gang, 2024. "Thermo-economic assessment and multi-objective optimization of organic Rankine cycle driven by solar energy and waste heat," Energy, Elsevier, vol. 290(C).
    28. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    29. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    30. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    31. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    2. Braimakis, Konstantinos & Grispos, Victoras & Karellas, Sotirios, 2021. "Exergetic efficiency potential of double-stage ORCs with zeotropic mixtures of natural hydrocarbons and CO2," Energy, Elsevier, vol. 218(C).
    3. Scardigno, Domenico & Fanelli, Emanuele & Viggiano, Annarita & Braccio, Giacobbe & Magi, Vinicio, 2015. "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources," Energy, Elsevier, vol. 91(C), pages 807-815.
    4. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    6. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).
    7. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).
    8. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    9. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    10. Hui-Xing, Zhai & Wei, Dong & Lin, Shi & Qing-Song, An & Sui-Lin, Wang & Bao-Lin, An, 2022. "Theoretical selection criteria of organic Rankine cycle form for different heat sources," Energy, Elsevier, vol. 238(PC).
    11. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    13. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    14. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    15. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    16. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    17. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    18. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao & Xu, Jin-Liang, 2014. "Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis," Energy, Elsevier, vol. 68(C), pages 238-247.
    19. Huixing, Zhai & Lin, Shi & Qingsong, An & Suilin, Wang & Baolin, An, 2021. "Key parameter influence mechanism and optimal working fluid screening correlation for trans-critical organic Rankine cycle with open type heat sources," Energy, Elsevier, vol. 214(C).
    20. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:526-:d:1574750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.