IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1454-d1054776.html
   My bibliography  Save this article

Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size

Author

Listed:
  • Okey Francis Obi

    (Department of Systems Process Engineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany
    Agricultural and Bioresources Engineering Department, Faculty of Engineering, University of Nigeria, Nsukka 410001, Nigeria)

  • Ralf Pecenka

    (Department of Systems Process Engineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany)

Abstract

Studies on the use of biomass from short rotation coppices for briquette production as a sustainable biofuel have been scarce in the literature. This study investigated the effects of two process variables, hammer mill screen size at three levels (5.3, 10.3, and 25.4 mm) and moisture content at three levels (13.6, 19, and 25% (w.b.)), on the properties of briquettes from poplar Max-4 trees. The whole tree was divided into two fractions, the crown and the stem, and briquettes were produced from them. The effects of the variables on compressed density, relaxed density, relaxation ratio, and the shatter index of the briquettes were analyzed. The results showed that the combined interaction of the variables had no significant effects ( p > 0.05) on the compressed density, relaxed density, and relaxation ratio of the briquettes. However, hammer mill screen size and moisture content both significantly influenced the shatter index irrespective of the tree fraction ( p < 0.05). Hammer mill screen sizes of 5.3 and 10.3 mm at moisture contents of 13.6 and 19% (w.b.) resulted in good quality briquettes across the properties investigated for both the crown and stem poplar tree fractions. This study shows that high-quality briquettes can be produced from poplar Max-4 woody biomass.

Suggested Citation

  • Okey Francis Obi & Ralf Pecenka, 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size," Energies, MDPI, vol. 16(3), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1454-:d:1054776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    2. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    3. Ralf Pecenka & Hannes Lenz & Simeon Olatayo Jekayinfa & Thomas Hoffmann, 2020. "Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    4. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low Pressure Densification Technique," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    5. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    6. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    7. Vincenzo Civitarese & Andrea Acampora & Giulio Sperandio & Alberto Assirelli & Rodolfo Picchio, 2019. "Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles," Energies, MDPI, vol. 12(15), pages 1-16, August.
    8. Shahjahan Ali & Shahnaj Akter & Csaba Fogarassy, 2021. "The Role of the Key Components of Renewable Energy (Combustible Renewables and Waste) in the Context of CO 2 Emissions and Economic Growth of Selected Countries in Europe," Energies, MDPI, vol. 14(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    2. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    3. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    4. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    5. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    6. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    7. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    8. Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.
    9. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    10. Armenia Androniceanu & Irina Georgescu, 2023. "The Impact of CO 2 Emissions and Energy Consumption on Economic Growth: A Panel Data Analysis," Energies, MDPI, vol. 16(3), pages 1-17, January.
    11. Oluwaseyi Kayode Fadele & Temiloluwa Ojuolape Amusan & Ademola Olagoke Afolabi & Clement Adesoji Ogunlade, 2021. "Characterisation of briquettes from forest wastes: Optimisation approach," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(3), pages 138-147.
    12. Bogdan Saletnik & Marcin Fiedur & Radosław Kwarciany & Grzegorz Zaguła & Marcin Bajcar, 2024. "Pyrolysis as a Method for Processing of Waste from Production of Cultivated Tobacco ( Nicotiana tabacum L.)," Sustainability, MDPI, vol. 16(7), pages 1-15, March.
    13. Jakub Styks & Marek Wróbel, 2024. "Modular Open Chamber Stand for Biomass Densification Using the Example of Miscanthus × Giganteus Greef Et Deu," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    14. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    15. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    16. Aries Roda D. Romallosa & Eckhard Kraft, 2017. "Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines," Resources, MDPI, vol. 6(1), pages 1-19, February.
    17. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    18. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    19. Jankowski, Krzysztof Józef & Budzyński, Wojciech Stefan & Kijewski, Łukasz, 2015. "An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland," Energy, Elsevier, vol. 81(C), pages 674-681.
    20. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1454-:d:1054776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.