IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6529-d654051.html
   My bibliography  Save this article

Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets

Author

Listed:
  • Safa Arous

    (Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boul. University, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Ahmed Koubaa

    (Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boul. University, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Hassine Bouafif

    (Centre Technologique des Résidus Industriels (CTRI), Rouyn-Noranda, QC J9X 5E5, Canada)

  • Besma Bouslimi

    (Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 445 Boul. University, Rouyn-Noranda, QC J9X 5E4, Canada)

  • Flavia Lega Braghiroli

    (Centre Technologique des Résidus Industriels (CTRI), Rouyn-Noranda, QC J9X 5E5, Canada)

  • Chedly Bradai

    (National Engineering School of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia)

Abstract

Thermal treatments such as torrefaction and fast pyrolysis are commonly employed methods to produce biofuels with high-energetic properties. In this study, wood chips were heat-treated at different temperatures of torrefaction (315 °C) and fast pyrolysis (400 and 454 °C) to form energetic pellets. Three softwoods, jack pine (JP), balsam fir (BF), and black spruce (BS), were evaluated. Pellets are produced using 20% moisture content and 15% pyrolytic lignin as a binder. Untreated- and treated-wood residues were characterized by surface chemistry, elemental analysis, and chemical composition, whereas all pellets were characterized in terms of density, high heat value (HHV), and durability. Results showed that both thermal treatments caused significant changes in the physicochemical structure of wood residues. Using temperatures higher than 315 °C leads to the disappearance of hydroxyl groups, a decrease in oxygen and hydrogen contents, and an increase in carbon content. Regardless of the treatment temperature, pellets made from heat-treated JP had the best durability (93%). In contrast, the calorific values of wood-treated pellets reached up to 31 MJ/kg, compared to untreated-wood pellets (19 MJ/kg). Thus, the densification of the thermal-treated wood residues represents a potential approach for producing biofuels with high energetic value.

Suggested Citation

  • Safa Arous & Ahmed Koubaa & Hassine Bouafif & Besma Bouslimi & Flavia Lega Braghiroli & Chedly Bradai, 2021. "Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets," Energies, MDPI, vol. 14(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6529-:d:654051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    3. Piyarath Saosee & Boonrod Sajjakulnukit & Shabbir H. Gheewala, 2020. "Life Cycle Assessment of Wood Pellet Production in Thailand," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    4. Kong, Lingjun & Tian, ShuangHong & Li, Zhaohui & Luo, Rongshu & Chen, Dingsheng & Tu, YuTing & Xiong, Ya, 2013. "Conversion of recycled sawdust into high HHV and low NOx emission bio-char pellets using lignin and calcium hydroxide blended binders," Renewable Energy, Elsevier, vol. 60(C), pages 559-565.
    5. Ghiasi, Bahman & Kumar, Linoj & Furubayashi, Takaaki & Lim, C. Jim & Bi, Xiaotao & Kim, Chang Soo & Sokhansanj, Shahab, 2014. "Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?," Applied Energy, Elsevier, vol. 134(C), pages 133-142.
    6. Samuelsson, Robert & Larsson, Sylvia H. & Thyrel, Mikael & Lestander, Torbjörn A., 2012. "Moisture content and storage time influence the binding mechanisms in biofuel wood pellets," Applied Energy, Elsevier, vol. 99(C), pages 109-115.
    7. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Émilie Robert & Flavia Lega Braghiroli, 2022. "Development of a Biochar-Based Substrate Added with Nitrogen from a Mining Effluent for the Production of Picea mariana Seedlings," Clean Technol., MDPI, vol. 4(3), pages 1-15, August.
    3. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    4. Nidhoim Assoumani & Merlin Simo-Tagne & Fatima Kifani-Sahban & Ablain Tagne Tagne & Maryam El Marouani & Marcel Brice Obounou Akong & Yann Rogaume & Pierre Girods & André Zoulalian, 2021. "Numerical Study of Cylindrical Tropical Woods Pyrolysis Using Python Tool," Sustainability, MDPI, vol. 13(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    3. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    4. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    5. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    6. Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
    7. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    8. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    9. Jung-Kyu Lee & Dongho Hong & Hyunkyu Chae & Dong-Hoon Lee, 2023. "Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines," Energies, MDPI, vol. 16(5), pages 1-14, March.
    10. Shui, Tao & Khatri, Vinay & Chae, Michael & Sokhansanj, Shahabaddine & Choi, Phillip & Bressler, David C., 2020. "Development of a torrefied wood pellet binder from the cross-linking between specified risk materials-derived peptides and epoxidized poly (vinyl alcohol)," Renewable Energy, Elsevier, vol. 162(C), pages 71-80.
    11. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    12. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    13. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    14. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    15. Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
    16. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    17. Chen, Wei-Hsin & Liu, Shih-Hsien & Juang, Tarng-Tzuen & Tsai, Chi-Ming & Zhuang, Yi-Qing, 2015. "Characterization of solid and liquid products from bamboo torrefaction," Applied Energy, Elsevier, vol. 160(C), pages 829-835.
    18. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Chen, Wei-Hsin & Lu, Ke-Miao & Tsai, Chi-Ming, 2012. "An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction," Applied Energy, Elsevier, vol. 100(C), pages 318-325.
    20. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6529-:d:654051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.