IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1850-d343915.html
   My bibliography  Save this article

An Unstructured Model for Anaerobic Treatment of Raw Cheese Whey for Volatile Fatty Acids Production

Author

Listed:
  • Claudio B-Arroyo

    (Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa Veracruz 91090, Mexico)

  • Antonio Lara-Musule

    (Facultad de Ingeniería Mecánica-Eléctrica, Universidad Veracruzana, Xalapa Veracruz 91090, Mexico)

  • Ervin Alvarez-Sanchez

    (Facultad de Ingeniería Mecánica-Eléctrica, Universidad Veracruzana, Xalapa Veracruz 91090, Mexico)

  • Gloria Trejo-Aguilar

    (Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Cd. Mexico 09340, Mexico)

  • Juan-Rodrigo Bastidas-Oyanedel

    (SDU-KBM, Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense, Denmark)

  • Eliseo Hernandez-Martinez

    (Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa Veracruz 91090, Mexico)

Abstract

The whey is a byproduct of the dairy industry that, if not treated properly, can cause serious environmental pollution problems. Anaerobic treatment is an alternative for its recovery, since, in addition to reducing the organic load. it allows the generation of value-added products such as volatile fatty acids (VFA) and biogas. However, the process is very complex and requires specific operating conditions that guarantee its stability and favor the production of value-added compounds. In this work, an unstructured mathematical model is proposed to evaluate the dynamic behavior of the stages of the anaerobic degradation process of the whey (i.e., hydrolysis, acidogenesis, acetogenesis and methanogenesis). The proposed model considers the dynamic variation in pH during the experiment. To validate the model, an experimental set was carried out at pH and temperature conditions that favor the production of VFAs. Experimental results show that the anaerobic treatment of the raw cheese whey favors pH = 5.5; for T = 40 °C, the maximum VFA production is obtained (30.71 g COD L −1 ), and for T = 35 °C, a 45.81% COD degradation is reached. The proposed model considers the effect of pH and temperature and it is validated in the region where the experimental tests were carried out. The model parameters were estimated using the Levenberg–Marquardt method, obtaining coefficients of determination R 2 > 0.94. The proposed model can describe the dynamic behavior of the key variables in the anaerobic treatment of raw cheese whey at different pH and temperature conditions, finding that VFA production is favored at pH ≥ 7, while the highest COD removal results in acidic conditions

Suggested Citation

  • Claudio B-Arroyo & Antonio Lara-Musule & Ervin Alvarez-Sanchez & Gloria Trejo-Aguilar & Juan-Rodrigo Bastidas-Oyanedel & Eliseo Hernandez-Martinez, 2020. "An Unstructured Model for Anaerobic Treatment of Raw Cheese Whey for Volatile Fatty Acids Production," Energies, MDPI, vol. 13(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1850-:d:343915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanco, V.M.C. & Oliveira, G.H.D. & Zaiat, M., 2019. "Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: Performance evaluation and kinetic modeling," Renewable Energy, Elsevier, vol. 139(C), pages 1310-1319.
    2. Charalambous, Panagiotis & Shin, Juhee & Shin, Seung Gu & Vyrides, Ioannis, 2020. "Anaerobic digestion of industrial dairy wastewater and cheese whey: Performance of internal circulation bioreactor and laboratory batch test at pH 5-6," Renewable Energy, Elsevier, vol. 147(P1), pages 1-10.
    3. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    2. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    3. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    4. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    5. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    6. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.
    7. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    8. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    9. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    10. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    11. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    12. Aspasia A. Chatzipaschali & Anastassios G. Stamatis, 2012. "Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects," Energies, MDPI, vol. 5(9), pages 1-34, September.
    13. Manthos, Georgios & Dareioti, Margarita & Zagklis, Dimitris & Kornaros, Michael, 2023. "Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy," Renewable Energy, Elsevier, vol. 211(C), pages 296-306.
    14. George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.
    15. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    16. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    17. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    18. Tańczuk, M. & Junga, R. & Werle, S. & Chabiński, M. & Ziółkowski, Ł., 2019. "Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass," Renewable Energy, Elsevier, vol. 136(C), pages 1055-1063.
    19. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    20. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1850-:d:343915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.