IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp296-306.html
   My bibliography  Save this article

Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy

Author

Listed:
  • Manthos, Georgios
  • Dareioti, Margarita
  • Zagklis, Dimitris
  • Kornaros, Michael

Abstract

During the processing of raw agricultural materials from the primary sector, large quantities of by-products with high chemical energy content are produced. Some of these are olive mill wastewater (OMW), cheese whey (CW), and liquid cow manure (LCM). Anaerobic digestion is a promising, environmentally friendly process for the energy valorization of agro-industrial and livestock by-products. The purpose of this study was the mathematical modeling of anaerobic digestion in batch systems, aiming to quantify possible synergies occurring between complementary substrates. The analysis was based on using biochemical methane potential data to predict the optimum hydraulic retention time (HRT) under steady-state conditions of continuous systems, for different substrate ratios. The objective function for HRT optimization was based on maximizing the process profit and included technoeconomic parameters, allowing the comparison of the different substrate ratios that can be used in the feedstock. The co-digestion with a mixture ratio of OMW:LCM equal to 70:30 proved very satisfactory for the sustainability of the process, exhibiting a maximum net profit of 16 €/m3reactor/d for a plant capacity of 10 m3feed/d.

Suggested Citation

  • Manthos, Georgios & Dareioti, Margarita & Zagklis, Dimitris & Kornaros, Michael, 2023. "Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy," Renewable Energy, Elsevier, vol. 211(C), pages 296-306.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:296-306
    DOI: 10.1016/j.renene.2023.04.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123005918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsigkou, Konstantina & Zagklis, Dimitris & Tsafrakidou, Panagiota & Zapanti, Paraskevi & Manthos, Georgios & Karamitou, Konstantina & Zafiri, Constantina & Kornaros, Michael, 2021. "Expired food products and used disposable adult nappies mesophilic anaerobic co-digestion: Biochemical methane potential, feedstock pretreatment and two-stage system performance," Renewable Energy, Elsevier, vol. 168(C), pages 309-318.
    2. Kim, Jinsu & Baek, Gahyun & Kim, Jaai & Lee, Changsoo, 2019. "Energy production from different organic wastes by anaerobic co-digestion: Maximizing methane yield versus maximizing synergistic effect," Renewable Energy, Elsevier, vol. 136(C), pages 683-690.
    3. Tsigkou, Konstantina & Tsafrakidou, Panagiota & Kopsahelis, Alexandros & Zagklis, Dimitris & Zafiri, Constantina & Kornaros, Michael, 2020. "Used disposable nappies and expired food products valorisation through one- & two-stage anaerobic co-digestion," Renewable Energy, Elsevier, vol. 147(P1), pages 610-619.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    6. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Manthos & Dimitris Zagklis & Constantina Zafiri & Michael Kornaros, 2024. "Techno-Economic Assessment of Anaerobic Digestion for Olive Oil Industry Effluents in Greece," Sustainability, MDPI, vol. 16(5), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Gonzalez-Piedra & Héctor Hernández-García & Juan M. Perez-Morales & Laura Acosta-Domínguez & Juan-Rodrigo Bastidas-Oyanedel & Eliseo Hernandez-Martinez, 2021. "A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues," Energies, MDPI, vol. 14(12), pages 1-11, June.
    2. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    3. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Margarita Andreas Dareioti & Aikaterini Ioannis Vavouraki & Konstantina Tsigkou & Michael Kornaros, 2021. "Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey," Energies, MDPI, vol. 14(17), pages 1-14, August.
    5. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    7. Lee, Eun Seo & Park, Seon Yeong & Kim, Chang Gyun, 2023. "Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide," Renewable Energy, Elsevier, vol. 212(C), pages 761-768.
    8. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    9. Mariana Ferdeș & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă, 2023. "Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity," Energies, MDPI, vol. 16(5), pages 1-24, February.
    10. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    11. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    12. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    14. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    15. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    16. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    17. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
    18. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    19. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    20. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:296-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.