IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1217-d329328.html
   My bibliography  Save this article

The Influence of Insulating Layers on the Acoustic Performance of Lightweight Frame Floors Intended for Use in Residential Buildings

Author

Listed:
  • Łukasz Nowotny

    (Thermal Physics, Acoustics and Environment Department, Instytut Techniki Budowlanej, Filtrowa 1, 00-611 Warsaw, Poland)

  • Jacek Nurzyński

    (Thermal Physics, Acoustics and Environment Department, Instytut Techniki Budowlanej, Filtrowa 1, 00-611 Warsaw, Poland)

Abstract

The acoustic performance of floors plays a primary role in the total quality rating of a residential building. The sound insulation of lightweight frame floors, which are increasingly being used in housing, depends on a number of factors and technical details. In effect, the sound transmission scheme is distinctly more complicated than in the case of homogeneous massive partitions. The aim of the study was to develop effective insulating layers of lightweight floors intended for use in residential buildings. The floor system should satisfy legal requirements in terms of airborne and impact sound insulation. The research was based on laboratory measurements taken in a standard test facility. Ten different models of wood and metal floors were considered. The acoustic performance of their basic structure was insufficient; however, the application of effective floating floors and suspended ceilings improved it greatly and succeeded in potential meeting requirements and satisfying most inhabitants’ expectations. The results demonstrate how different lightweight floor components influence the acoustic performance of the floor and how the insulating layers cooperate when applied together. The findings will be useful in working on a new floor design and optimizing its structure in terms of acoustics.

Suggested Citation

  • Łukasz Nowotny & Jacek Nurzyński, 2020. "The Influence of Insulating Layers on the Acoustic Performance of Lightweight Frame Floors Intended for Use in Residential Buildings," Energies, MDPI, vol. 13(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1217-:d:329328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    2. Caniato, Marco & Bettarello, Federica & Ferluga, Alessio & Marsich, Lucia & Schmid, Chiara & Fausti, Patrizio, 2017. "Acoustic of lightweight timber buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 585-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Kočí & Robert Černý, 2020. "Special Issue “Recent Developments in Building Physics”," Energies, MDPI, vol. 13(23), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    2. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Stine Kloster & Anne Marie Kirkegaard & Michael Davidsen & Anne Illemann Christensen & Niss Skov Nielsen & Lars Gunnarsen & Annette Kjær Ersbøll, 2022. "Patterns of Perceived Indoor Environment in Danish Homes," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    4. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.
    5. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    6. Qing Yang & Nianping Li, 2022. "Subjective and Objective Evaluation of Shading on Thermal, Visual, and Acoustic Properties of Indoor Environments," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    7. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    8. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.
    9. Libor Dražan & René Križan & Miroslav Popela, 2021. "Design and Testing of a Low-Tech DEW Generator for Determining Electromagnetic Immunity of Standard Electronic Circuits," Energies, MDPI, vol. 14(11), pages 1-15, May.
    10. Siham El Yamani & Rafika Hajji & Gilles-Antoine Nys & Mohamed Ettarid & Roland Billen, 2021. "3D Variables Requirements for Property Valuation Modeling Based on the Integration of BIM and CIM," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    11. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    12. Marco Caniato & Andrea Gasparella, 2019. "Discriminating People’s Attitude towards Building Physical Features in Sustainable and Conventional Buildings," Energies, MDPI, vol. 12(8), pages 1-27, April.
    13. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    14. Xiaona Fan & Yu Guo & Qin Zhao & Yiyun Zhu, 2021. "Structural Optimization and Application Research of Alkali-Activated Slag Ceramsite Compound Insulation Block Based on Finite Element Method," Mathematics, MDPI, vol. 9(19), pages 1-22, October.
    15. Krzysztof Grygierek & Seyedkeivan Nateghi & Joanna Ferdyn-Grygierek & Jan Kaczmarczyk, 2023. "Controlling and Limiting Infection Risk, Thermal Discomfort, and Low Indoor Air Quality in a Classroom through Natural Ventilation Controlled by Smart Windows," Energies, MDPI, vol. 16(2), pages 1-21, January.
    16. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    17. Nusrat Jannat & Aseel Hussien & Badr Abdullah & Alison Cotgrave, 2020. "A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    18. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    19. Ali Shubbar & Mohammed Nasr & Mayadah Falah & Zainab Al-Khafaji, 2021. "Towards Net Zero Carbon Economy: Improving the Sustainability of Existing Industrial Infrastructures in the UK," Energies, MDPI, vol. 14(18), pages 1-11, September.
    20. Radostina A. Angelova & Detelin Markov & Rositsa Velichkova & Peter Stankov & Iskra Simova, 2021. "Exhaled Carbon Dioxide as a Physiological Source of Deterioration of Indoor Air Quality in Non-Industrial Environments: Influence of Air Temperature," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1217-:d:329328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.