IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5541-d629333.html
   My bibliography  Save this article

HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation

Author

Listed:
  • Alessandro Franco

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Lorenzo Miserocchi

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Daniele Testi

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

Abstract

The paper analyzes and compares the perspectives for reducing the energy consumption associated to the operation of Heating Ventilation and Air Conditioning system for climatic control of large-size non-residential buildings. Three different control strategies are considered comparing the use of boiler and heat pumps as heating systems and analyzing the use of demand-controlled ventilation, operating on the effective occupancy of the building. The control strategies are applied to two different educational buildings with shapes representative of typical educational structures. The results of the analysis show how the energy consumption can be reduced up to 70%, shifting from the actual values of the energy intensity of over 300 kWh/m 2 for year to values of less than 100 kWh/m 2 per year. The significance of the energy savings achieved in such different buildings has led to the identification of a possible benchmark for HVAC systems in the next future years which could help reach the environmental targets in this sector.

Suggested Citation

  • Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5541-:d:629333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ChungYeon Won & SangTae No & Qamar Alhadidi, 2019. "Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago," Energies, MDPI, vol. 12(24), pages 1-17, December.
    2. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    3. Png, Ethan & Srinivasan, Seshadhri & Bekiroglu, Korkut & Chaoyang, Jiang & Su, Rong & Poolla, Kameshwar, 2019. "An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings," Applied Energy, Elsevier, vol. 239(C), pages 408-424.
    4. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "Energy Intensity Reduction in Large-Scale Non-Residential Buildings by Dynamic Control of HVAC with Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-17, June.
    5. Khalilnejad, Arash & French, Roger H. & Abramson, Alexis R., 2020. "Data-driven evaluation of HVAC operation and savings in commercial buildings," Applied Energy, Elsevier, vol. 278(C).
    6. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    7. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    9. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    10. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    11. Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
    12. Perez-Lombard, Luis & Ortiz, Jose & Maestre, Ismael R., 2011. "The map of energy flow in HVAC systems," Applied Energy, Elsevier, vol. 88(12), pages 5020-5031.
    13. Chul-Ho Kim & Seung-Eon Lee & Kwang-Ho Lee & Kang-Soo Kim, 2019. "Detailed Comparison of the Operational Characteristics of Energy-Conserving HVAC Systems during the Cooling Season," Energies, MDPI, vol. 12(21), pages 1-29, October.
    14. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    15. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
    2. Domagoj Badanjak & Hrvoje Pandžić, 2021. "Distribution-Level Flexibility Markets—A Review of Trends, Research Projects, Key Stakeholders and Open Questions," Energies, MDPI, vol. 14(20), pages 1-26, October.
    3. Wenhui Ji & Yanping Yuan, 2022. "Development of Assessing the Thermal Comfort and Energy Performance for Buildings," Energies, MDPI, vol. 15(16), pages 1-2, August.
    4. Rosa Francesca De Masi & Antonio Gigante & Valentino Festa & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of HVAC’s Management on Indoor Thermo-Hygrometric Comfort and Energy Balance: In Situ Assessments on a Real nZEB," Energies, MDPI, vol. 14(21), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "Energy Intensity Reduction in Large-Scale Non-Residential Buildings by Dynamic Control of HVAC with Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    4. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.
    5. Dominik Keiner & Larissa D.S.N.S. Barbosa & Dmitrii Bogdanov & Arman Aghahosseini & Ashish Gulagi & Solomon Oyewo & Michael Child & Siavash Khalili & Christian Breyer, 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050," Energies, MDPI, vol. 14(13), pages 1-51, June.
    6. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    7. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    8. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    12. Sandra G. L. Persiani & Bilge Kobas & Sebastian Clark Koth & Thomas Auer, 2021. "Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment," Energies, MDPI, vol. 14(1), pages 1-40, January.
    13. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    14. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    16. Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
    17. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    18. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    19. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    20. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Liu, Hua & Zhang, Zhiping & Wu, Yongqiang & Yue, Qingxue & Zhang, Ying, 2024. "Film condensation experiments of R1233zd(E) over horizontal tubes and high-temperature condensation predictions for high-temperature heat pump," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5541-:d:629333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.