IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11498-d913300.html
   My bibliography  Save this article

Patterns of Perceived Indoor Environment in Danish Homes

Author

Listed:
  • Stine Kloster

    (National Institute of Public Health, University of Southern Denmark, Studiestraede 6, 1455 Copenhagen K, Denmark)

  • Anne Marie Kirkegaard

    (National Institute of Public Health, University of Southern Denmark, Studiestraede 6, 1455 Copenhagen K, Denmark
    Department of the Built Environment, Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen SV, Denmark)

  • Michael Davidsen

    (National Institute of Public Health, University of Southern Denmark, Studiestraede 6, 1455 Copenhagen K, Denmark)

  • Anne Illemann Christensen

    (National Institute of Public Health, University of Southern Denmark, Studiestraede 6, 1455 Copenhagen K, Denmark)

  • Niss Skov Nielsen

    (Department of the Built Environment, Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen SV, Denmark)

  • Lars Gunnarsen

    (Department of the Built Environment, Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen SV, Denmark)

  • Annette Kjær Ersbøll

    (National Institute of Public Health, University of Southern Denmark, Studiestraede 6, 1455 Copenhagen K, Denmark)

Abstract

The indoor environment is composed of several exposures existing simultaneously. Therefore, it might be useful to combine exposures into common combined measures when used to assess the association with health. The aim of our study was to identify patterns of the perceived indoor environment. Data from the Danish Health and Morbidity Survey in the year 2000 were used. The perceived indoor environment was assessed using a questionnaire (e.g., annoyances from noise, draught, and stuffy air; 13 items in total). Factor analysis was used to explore the structure of relationships between these 13 items. Furthermore, groups of individuals with similar perceived indoor environment were identified using latent class analysis. A total of 16,688 individuals ≥16 years participated. Their median age was 46 years. Four factors were extracted from the factor analysis. The factors were characterized by: (1) a mixture of items, (2) temperature, (3) traffic, and (4) neighbor noise. Moreover, three groups of individuals sharing the same perception of their indoor environment were identified. They were characterized by: a low (n = 14,829), moderate (n = 980), and large number of annoyances (n = 879). Observational studies need to take this correlation and clustering of perceived annoyances into account when studying associations between the indoor environment and health.

Suggested Citation

  • Stine Kloster & Anne Marie Kirkegaard & Michael Davidsen & Anne Illemann Christensen & Niss Skov Nielsen & Lars Gunnarsen & Annette Kjær Ersbøll, 2022. "Patterns of Perceived Indoor Environment in Danish Homes," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11498-:d:913300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Marie Kirkegaard & Stine Kloster & Michael Davidsen & Anne Illemann Christensen & Jørgen Vestbo & Niss Skov Nielsen & Annette Kjær Ersbøll & Lars Gunnarsen, 2023. "The Association between Perceived Annoyances in the Indoor Home Environment and Respiratory Infections: A Danish Cohort Study with up to 19 Years of Follow-Up," IJERPH, MDPI, vol. 20(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    2. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.
    4. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    5. Qing Yang & Nianping Li, 2022. "Subjective and Objective Evaluation of Shading on Thermal, Visual, and Acoustic Properties of Indoor Environments," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    6. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    7. Libor Dražan & René Križan & Miroslav Popela, 2021. "Design and Testing of a Low-Tech DEW Generator for Determining Electromagnetic Immunity of Standard Electronic Circuits," Energies, MDPI, vol. 14(11), pages 1-15, May.
    8. Siham El Yamani & Rafika Hajji & Gilles-Antoine Nys & Mohamed Ettarid & Roland Billen, 2021. "3D Variables Requirements for Property Valuation Modeling Based on the Integration of BIM and CIM," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    9. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    10. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Xiaona Fan & Yu Guo & Qin Zhao & Yiyun Zhu, 2021. "Structural Optimization and Application Research of Alkali-Activated Slag Ceramsite Compound Insulation Block Based on Finite Element Method," Mathematics, MDPI, vol. 9(19), pages 1-22, October.
    12. Krzysztof Grygierek & Seyedkeivan Nateghi & Joanna Ferdyn-Grygierek & Jan Kaczmarczyk, 2023. "Controlling and Limiting Infection Risk, Thermal Discomfort, and Low Indoor Air Quality in a Classroom through Natural Ventilation Controlled by Smart Windows," Energies, MDPI, vol. 16(2), pages 1-21, January.
    13. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    14. Nusrat Jannat & Aseel Hussien & Badr Abdullah & Alison Cotgrave, 2020. "A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    15. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    16. Ali Shubbar & Mohammed Nasr & Mayadah Falah & Zainab Al-Khafaji, 2021. "Towards Net Zero Carbon Economy: Improving the Sustainability of Existing Industrial Infrastructures in the UK," Energies, MDPI, vol. 14(18), pages 1-11, September.
    17. Łukasz Nowotny & Jacek Nurzyński, 2020. "The Influence of Insulating Layers on the Acoustic Performance of Lightweight Frame Floors Intended for Use in Residential Buildings," Energies, MDPI, vol. 13(5), pages 1-15, March.
    18. Radostina A. Angelova & Detelin Markov & Rositsa Velichkova & Peter Stankov & Iskra Simova, 2021. "Exhaled Carbon Dioxide as a Physiological Source of Deterioration of Indoor Air Quality in Non-Industrial Environments: Influence of Air Temperature," Energies, MDPI, vol. 14(23), pages 1-21, December.
    19. Grzegorz Majewski & Łukasz J. Orman & Marek Telejko & Norbert Radek & Jacek Pietraszek & Agata Dudek, 2020. "Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment," Energies, MDPI, vol. 13(8), pages 1-20, April.
    20. Łukasz Mazur & Anna Bać & Magdalena Daria Vaverková & Jan Winkler & Aleksandra Nowysz & Eugeniusz Koda, 2022. "Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review," Energies, MDPI, vol. 15(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11498-:d:913300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.