IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1429-d222617.html
   My bibliography  Save this article

Discriminating People’s Attitude towards Building Physical Features in Sustainable and Conventional Buildings

Author

Listed:
  • Marco Caniato

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen 39100, Italy)

  • Andrea Gasparella

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen 39100, Italy)

Abstract

At the present time, buildings technologies for residential constructions are essentially divided into two groups. The first one is associated to conventional techniques using concrete, masonry or in general heavyweight structures, while the second one is associated to timber, e.g., sustainable glulam, crosslam, etc. (lightweight structures). Technicians, scientist, designers and non-expert people have their own stereotyped ideas and attitudes, related to thermal and sound insulation, structural stability, fire resistance, service equipment, heating and cooling systems, etc. Nevertheless, for people who is not strongly related to both construction procedure studies, analysis, experiences or focuses, timber structures appear to be more comfortable, reliable and insulated. The need of investigating the role of non-physical and non-measurable parameters in affecting future inhabitants’ overall preconceptions related to new sustainable buildings is thus of paramount importance. The hypothesis that behavioral, physiological, past experiences and psychological factors can have a non-negligible role in determining the final user perception, interaction and adaptation to timber buildings has to be verified. For these reasons, an international survey was realized in order to investigate what individuals expect from these two different construction technologies. After focused statistical analysis, it could be demonstrated how geographical difference could influence results and that, for indoor comfort, stereotypes do exist for lightweight buildings in comparison to heavyweight ones, highlighting how timber construction are associated to thermal comfort and sensed as innovative even if there is no complete distrust in conventional ones. The influence of non-physical and non-measurable parameters is correlated to people’s attitudes.

Suggested Citation

  • Marco Caniato & Andrea Gasparella, 2019. "Discriminating People’s Attitude towards Building Physical Features in Sustainable and Conventional Buildings," Energies, MDPI, vol. 12(8), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1429-:d:222617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Won-hak & Kim, Kyoung-woo & Lim, Seock-ho, 2014. "Improvement of floor impact sound on modular housing for sustainable building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 263-275.
    2. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    3. Caniato, Marco & Bettarello, Federica & Ferluga, Alessio & Marsich, Lucia & Schmid, Chiara & Fausti, Patrizio, 2017. "Acoustic of lightweight timber buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 585-596.
    4. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    5. Ramage, Michael H. & Burridge, Henry & Busse-Wicher, Marta & Fereday, George & Reynolds, Thomas & Shah, Darshil U. & Wu, Guanglu & Yu, Li & Fleming, Patrick & Densley-Tingley, Danielle & Allwood, Juli, 2017. "The wood from the trees: The use of timber in construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 333-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengxun Jin & Jonghyeob Kim & Chang-taek Hyun & Sangwon Han, 2019. "Development of a Model for Predicting Probabilistic Life-Cycle Cost for the Early Stage of Public-Office Construction," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    2. Antonio Millán-Jiménez & Rafael Herrera-Limones & Álvaro López-Escamilla & Emma López-Rubio & Miguel Torres-García, 2021. "Confinement, Comfort and Health: Analysis of the Real Influence of Lockdown on University Students during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(11), pages 1-15, May.
    3. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2020. "Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach," Energies, MDPI, vol. 13(11), pages 1-23, June.
    4. Paweł Krause & Artur Nowoświat, 2019. "Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene," Energies, MDPI, vol. 13(1), pages 1-17, December.
    5. Xuemin Sui & Huajiang Wang & Ming Qu & Huitao Liu, 2020. "Thermal Response Characteristics of Intermittently Cooled Room with Tube-Embedded Cooling Slab and Optimization of Intermittent Control," Energies, MDPI, vol. 13(7), pages 1-28, March.
    6. Rafael Herrera-Limones & Antonio Millán-Jiménez & Álvaro López-Escamilla & Miguel Torres-García, 2020. "Health and Habitability in the Solar Decathlon University Competitions: Statistical Quantification and Real Influence on Comfort Conditions," IJERPH, MDPI, vol. 17(16), pages 1-25, August.
    7. Bin Qian & Tao Yu & Haiquan Bi & Bo Lei, 2019. "Measurements of Energy Consumption and Environment Quality of High-Speed Railway Stations in China," Energies, MDPI, vol. 13(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Antonino Di Bella & Milica Mitrovic, 2020. "Acoustic Characteristics of Cross-Laminated Timber Systems," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    3. Benedetti Miriam & Herce Carlos & Sforzini Matteo & Susca Tiziana & Toro Claudia, 2024. "Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions: proposal of a methodology to investigate opportunities based on a context analysis," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 15(s1), pages 38-57.
    4. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    5. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Nazari, Meysam & Jebrane, Mohamed & Terziev, Nasko, 2023. "New hybrid bio-composite based on epoxidized linseed oil and wood particles hosting ethyl palmitate for energy storage in buildings," Energy, Elsevier, vol. 278(C).
    8. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    10. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
    11. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    13. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    15. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    16. Meng-Ting Tsai & Anthony Sugiharto Wonodihardjo, 2018. "Achieving Sustainability of Traditional Wooden Houses in Indonesia by Utilization of Cost-Efficient Waste-Wood Composite," Sustainability, MDPI, vol. 10(6), pages 1-21, May.
    17. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    18. Claudia Fabiani & Anna Laura Pisello & Marco Barbanera & Luisa F. Cabeza & Franco Cotana, 2019. "Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation," Energies, MDPI, vol. 12(6), pages 1-18, March.
    19. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    20. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1429-:d:222617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.