IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2488-d649824.html
   My bibliography  Save this article

Structural Optimization and Application Research of Alkali-Activated Slag Ceramsite Compound Insulation Block Based on Finite Element Method

Author

Listed:
  • Xiaona Fan

    (Department of Civil Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Yu Guo

    (Department of Civil Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Qin Zhao

    (Department of Civil Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Yiyun Zhu

    (Department of Civil Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

The research and application of new wall materials have been attracting increasing attention owing to the continuous promotion of sustainable development in the building industry. An alkali-activated slag ceramsite compound insulation block (AASCCIB) is used as the research object. Based on the finite element method, the effects of different numbers of hole rows and hole ratios on the thermal and mechanical performances of AASCCIBs are analyzed using ANSYS CFX. On this basis, the AASCCIB with the optimal comprehensive performance is determined by a multi-objective optimization analysis. Finally, the improvement effect of the AASCCIB wall on the indoor thermal environment relative to an ordinary block (OB) wall is quantitatively analyzed using ANSYS CFX. The results show that the von Mises equivalent stress and heat transfer coefficient of the AASCCIB decrease with the increase in the hole ratio when the hole shape and number of hole rows are constant. AASCCIB B 1 has the optimal comprehensive performance among six AASCCIBs, with the heat transfer coefficient and average von Mises equivalent stress of 0.446 W/(m 2 ∙K) and 9.52 MPa, respectively. Compared with the indoor lowest and average temperatures of the building with the OB wall, those of the building with the AASCCIB wall increased by at least 1.39 and 0.82 °C on the winter solstice, respectively. The indoor temperature difference decreased by at least 0.83 °C. In addition, the indoor highest temperature, average temperature, and temperature difference decreased by at least 1.75, 0.79, and 1.89 °C on the summer solstice, respectively.

Suggested Citation

  • Xiaona Fan & Yu Guo & Qin Zhao & Yiyun Zhu, 2021. "Structural Optimization and Application Research of Alkali-Activated Slag Ceramsite Compound Insulation Block Based on Finite Element Method," Mathematics, MDPI, vol. 9(19), pages 1-22, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2488-:d:649824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tieming Guo & Songtao Hu & Guodan Liu, 2017. "Evaluation Model of Specific Indoor Environment Overall Comfort Based on Effective-Function Method," Energies, MDPI, vol. 10(10), pages 1-16, October.
    2. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    3. Li, Min & Zhou, Dongyi & Jiang, Yaqing, 2021. "Preparation and thermal storage performance of phase change ceramsite sand and thermal storage light-weight concrete," Renewable Energy, Elsevier, vol. 175(C), pages 143-152.
    4. Qin Zhao & Xiaona Fan & Qing Wang & Guochen Sang & Yiyun Zhu, 2020. "Research on Energy-Saving Design of Rural Building Wall in Qinba Mountains Based on Uniform Radiation Field," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, September.
    5. Jonghoon Ahn, 2020. "Improvement of the Performance Balance between Thermal Comfort and Energy Use for a Building Space in the Mid-Spring Season," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yumin Cheng, 2022. "Preface to the Special Issue on “Numerical Computation, Data Analysis and Software in Mathematics and Engineering”," Mathematics, MDPI, vol. 10(13), pages 1-5, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    2. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Yingtao Qi & Xiaodi Li & Yupeng Wang & Dian Zhou, 2023. "Research on Indoor Thermal Environment Analysis and Optimization Strategy of Rural Dwellings around Xi’an Based on PET Evaluation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    4. Stine Kloster & Anne Marie Kirkegaard & Michael Davidsen & Anne Illemann Christensen & Niss Skov Nielsen & Lars Gunnarsen & Annette Kjær Ersbøll, 2022. "Patterns of Perceived Indoor Environment in Danish Homes," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    5. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.
    6. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    7. Qing Yang & Nianping Li, 2022. "Subjective and Objective Evaluation of Shading on Thermal, Visual, and Acoustic Properties of Indoor Environments," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    8. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    9. Libor Dražan & René Križan & Miroslav Popela, 2021. "Design and Testing of a Low-Tech DEW Generator for Determining Electromagnetic Immunity of Standard Electronic Circuits," Energies, MDPI, vol. 14(11), pages 1-15, May.
    10. Siham El Yamani & Rafika Hajji & Gilles-Antoine Nys & Mohamed Ettarid & Roland Billen, 2021. "3D Variables Requirements for Property Valuation Modeling Based on the Integration of BIM and CIM," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    11. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    12. Gong, Shuai & Li, Qiong & Shao, Liqun & Ding, Yuwen & Gao, Wenfeng, 2024. "Performance analysis of V-corrugated flat plate collector containing binary crystal thermal storage materials," Renewable Energy, Elsevier, vol. 221(C).
    13. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    14. Andrés Jonathan Guízar Dena & Miguel Ángel Pascual & Carlos Fernández Bandera, 2021. "Building Energy Model for Mexican Energy Standard Verification Using Physics-Based Open Studio SGSAVE Software Simulation," Sustainability, MDPI, vol. 13(3), pages 1-34, February.
    15. Krzysztof Grygierek & Seyedkeivan Nateghi & Joanna Ferdyn-Grygierek & Jan Kaczmarczyk, 2023. "Controlling and Limiting Infection Risk, Thermal Discomfort, and Low Indoor Air Quality in a Classroom through Natural Ventilation Controlled by Smart Windows," Energies, MDPI, vol. 16(2), pages 1-21, January.
    16. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    17. Nusrat Jannat & Aseel Hussien & Badr Abdullah & Alison Cotgrave, 2020. "A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    18. Francesco Mancini & Fabio Nardecchia & Daniele Groppi & Francesco Ruperto & Carlo Romeo, 2020. "Indoor Environmental Quality Analysis for Optimizing Energy Consumptions Varying Air Ventilation Rates," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    19. Ali Shubbar & Mohammed Nasr & Mayadah Falah & Zainab Al-Khafaji, 2021. "Towards Net Zero Carbon Economy: Improving the Sustainability of Existing Industrial Infrastructures in the UK," Energies, MDPI, vol. 14(18), pages 1-11, September.
    20. Yu, Kunyang & Jia, Minjie & Tian, Weichen & Yang, Yingzi & Liu, Yushi, 2024. "Enhanced thermo-mechanical properties of cementitious composites via red mud-based microencapsulated phase change material: Towards energy conservation in building," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2488-:d:649824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.