IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2847-d555049.html
   My bibliography  Save this article

Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings

Author

Listed:
  • Alessandro Franco

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Carlo Bartoli

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Paolo Conti

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Lorenzo Miserocchi

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Daniele Testi

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

Abstract

The paper provides a methodology for the optimal control of heating, ventilation, and air conditioning (HVAC) systems used in public buildings, with the purpose of obtaining high comfort and safety standards along with energy efficiency. The combination of the two concurrent objectives of minimizing energy use and guaranteeing high standards of occupant comfort is obtained by means of multi-objective optimization, in which a comfort model is combined along with a dynamic energy model of the building. The use of dynamic setpoints for the HVAC and the inclusion of comfort indicators represent a step forward, compared to the current design and operation procedures suggested by technical standards. The utilization of the proposed methodology is tested with reference to a case study, represented by an academic building used by the University of Pisa for educational purposes, whose extensive and variable occupancy can help to emphasize the importance of comfort in the operation of HVAC systems in different climatic conditions and with different occupancy profiles. We show how this optimization brings interesting results in terms of energy-saving (up to 30%), obtaining an increased comfort level (of more than 25%) compared to the operating conditions suggested by technical standards.

Suggested Citation

  • Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2847-:d:555049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2847/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    2. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    3. Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
    4. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    7. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    8. Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
    9. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    2. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    3. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    4. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    5. Yunho Kim & Yunha Park & Hyuncheol Seo & Jungha Hwang, 2023. "Load Prediction Algorithm Applied with Indoor Environment Sensing in University Buildings," Energies, MDPI, vol. 16(2), pages 1-14, January.
    6. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "Energy Intensity Reduction in Large-Scale Non-Residential Buildings by Dynamic Control of HVAC with Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    2. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    3. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    4. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    5. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    6. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    7. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    8. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    9. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    10. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    11. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    12. Jung, Wooyoung & Jazizadeh, Farrokh, 2019. "Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions," Applied Energy, Elsevier, vol. 239(C), pages 1471-1508.
    13. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    14. Francesca Marcello & Virginia Pilloni & Daniele Giusto, 2019. "Sensor-Based Early Activity Recognition Inside Buildings to Support Energy and Comfort Management Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    15. Buonomano, Annamaria & Montanaro, Umberto & Palombo, Adolfo & Santini, Stefania, 2016. "Dynamic building energy performance analysis: A new adaptive control strategy for stringent thermohygrometric indoor air requirements," Applied Energy, Elsevier, vol. 163(C), pages 361-386.
    16. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    17. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    18. Jazizadeh, Farrokh & Jung, Wooyoung, 2018. "Personalized thermal comfort inference using RGB video images for distributed HVAC control," Applied Energy, Elsevier, vol. 220(C), pages 829-841.
    19. Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2847-:d:555049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.