IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p593-d313919.html
   My bibliography  Save this article

Energy-Efficient Direct Yaw Moment Control for In-Wheel Motor Electric Vehicles Utilising Motor Efficiency Maps

Author

Listed:
  • Peikun Sun

    (KTH Vehicle Dynamics, Department of Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Annika Stensson Trigell

    (KTH Vehicle Dynamics, Department of Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    Centre for ECO2 Vehicle Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    These authors contributed equally to this work.)

  • Lars Drugge

    (KTH Vehicle Dynamics, Department of Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    Centre for ECO2 Vehicle Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    These authors contributed equally to this work.)

  • Jenny Jerrelind

    (KTH Vehicle Dynamics, Department of Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    Centre for ECO2 Vehicle Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
    These authors contributed equally to this work.)

Abstract

An active energy-efficient direct yaw moment control (DYC) for in-wheel motor electric vehicles taking motor efficiency maps into consideration is proposed in this paper. The potential contribution of DYC to energy saving during quasi-steady-state cornering is analysed. The study in this paper has produced promising results which show that DYC can be used to reduce the power consumption while satisfying the same cornering demand. A controller structure that includes a driver model and an offline torque distribution law during continuous driving and cornering is developed. For comparison, the power consumption of stability DYC is also analysed. Simulations for double lane change manoeuvres are performed and driving conditions either with a constant velocity or with longitudinal acceleration are designed to verify the effectiveness of the proposed controller in different driving situations. Under constant velocity cornering, since the total torque demand is not high, two rear wheels are engaged and during cornering it is beneficial to distribute more torque to one wheel to improve energy efficiency. In the simulated driving manoeuvres, up to 10% energy can be saved compared to other control methods. During acceleration in cornering, since the total torque demand is high, it is energy-efficient to use all the four in-wheel motors during cornering.

Suggested Citation

  • Peikun Sun & Annika Stensson Trigell & Lars Drugge & Jenny Jerrelind, 2020. "Energy-Efficient Direct Yaw Moment Control for In-Wheel Motor Electric Vehicles Utilising Motor Efficiency Maps," Energies, MDPI, vol. 13(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:593-:d:313919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    2. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    3. Peikun Sun & Annika Stensson Trigell & Lars Drugge & Jenny Jerrelind & Mats Jonasson, 2018. "Exploring the Potential of Camber Control to Improve Vehicles’ Energy Efficiency during Cornering," Energies, MDPI, vol. 11(4), pages 1-21, March.
    4. Li Zhai & Rufei Hou & Tianmin Sun & Steven Kavuma, 2018. "Continuous Steering Stability Control Based on an Energy-Saving Torque Distribution Algorithm for a Four in-Wheel-Motor Independent-Drive Electric Vehicle," Energies, MDPI, vol. 11(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiming Lin & Teng Zou & Feng Zhang & Yong Zhang, 2022. "Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Fuzzy Sliding Mode Control," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Rufei Hou & Li Zhai & Tianmin Sun, 2018. "Steering Stability Control for a Four Hub-Motor Independent-Drive Electric Vehicle with Varying Adhesion Coefficient," Energies, MDPI, vol. 11(9), pages 1-17, September.
    3. Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
    4. Szilárd Czibere & Ádám Domina & Ádám Bárdos & Zsolt Szalay, 2021. "Model Predictive Controller Design for Vehicle Motion Control at Handling Limits in Multiple Equilibria on Varying Road Surfaces," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    6. Deng, Huifan & Zhao, Youqun & Feng, Shilin & Wang, Qiuwei & Zhang, Chenxi & Lin, Fen, 2021. "Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy," Energy, Elsevier, vol. 219(C).
    7. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    8. Wang, Jun-Cheng & Wang, Fa-Hui & Wang, Ya-Xiong & Chen, Shi-An, 2023. "Analysis of real-time energy losses of electric vehicle caused by non-stationary road irregularity," Energy, Elsevier, vol. 282(C).
    9. Hung, Nguyen Ba & Lim, Ocktaeck, 2020. "A review of history, development, design and research of electric bicycles," Applied Energy, Elsevier, vol. 260(C).
    10. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).
    11. Trancho, E. & Ibarra, E. & Arias, A. & Kortabarria, I. & Prieto, P. & Martínez de Alegría, I. & Andreu, J. & López, I., 2018. "Sensorless control strategy for light-duty EVs and efficiency loss evaluation of high frequency injection under standardized urban driving cycles," Applied Energy, Elsevier, vol. 224(C), pages 647-658.
    12. Wei, Hongqian & Zhang, Nan & Liang, Jun & Ai, Qiang & Zhao, Wenqiang & Huang, Tianyi & Zhang, Youtong, 2022. "Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance," Energy, Elsevier, vol. 238(PB).
    13. Balázs Németh, 2021. "Coordination of Lateral Vehicle Control Systems Using Learning-Based Strategies," Energies, MDPI, vol. 14(5), pages 1-17, February.
    14. Jie Tian & Jun Tong & Shi Luo, 2018. "Differential Steering Control of Four-Wheel Independent-Drive Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-18, October.
    15. Hu, Jianjun & Deng, Chenghao & Yang, Dianzhao & Yang, Ying & Jia, Meixia, 2022. "Optimal energy consumption and torque fluctuation control of integrated electric drive system based on mechanical-electromagnetic-thermal coupling characteristics," Energy, Elsevier, vol. 247(C).
    16. Hung, Nguyen Ba & Sung, Jaewon & Lim, Ocktaeck, 2018. "A simulation and experimental study of operating performance of an electric bicycle integrated with a semi-automatic transmission," Applied Energy, Elsevier, vol. 221(C), pages 319-333.
    17. Liu, Qin & Zhang, Wencan & Zhang, Zhongbo & Qin, Qichao, 2022. "A drive system global control strategy for electric vehicle based on optimized acceleration curve," Energy, Elsevier, vol. 248(C).
    18. Yutong Bao & Changqing Du & Dongmei Wu & Huan Liu & Wei Liu & Jun Li, 2023. "Coordinated Slip Control of Multi-Axle Distributed Drive Vehicle Based on HLQR," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    19. Xu Hu & Yisong Chen & Zhensen Ding & Liang Gu, 2019. "Vehicle Optimal Control Design to Meet the 1.5 °C Target: A Control Design Framework for Vehicle Subsystems," Energies, MDPI, vol. 12(16), pages 1-21, August.
    20. Deping Wang & Changyang Guan & Junnian Wang & Haisheng Wang & Zhenhao Zhang & Dachang Guo & Fang Yang, 2023. "Review of Energy-Saving Technologies for Electric Vehicles, from the Perspective of Driving Energy Management," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:593-:d:313919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.