IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919320100.html
   My bibliography  Save this article

A review of history, development, design and research of electric bicycles

Author

Listed:
  • Hung, Nguyen Ba
  • Lim, Ocktaeck

Abstract

The depletion of fossil fuel and increase of environmental pollution caused by internal combustion engine vehicles are big issues worldwide that need to be solved. One of promising solutions to address energy security and environmental pollution is utilization of electric vehicles. Electric bicycle is one of the electric vehicles attracting significant attention because of its many benefits. Many review papers showed potential of electric vehicles for wide application in future, but very few of them solely focused on electric bicycles. This paper shows in detail a review of history, development, design and research of electric bicycles, in which history, development together with markets of electric bicycles are firstly reviewed. The classification of electric bicycles in components and designs is reviewed in detail. The electric bicycle research fields are reviewed based on prior studies to give helpful information for scientists as well as researchers to develop electric bicycles further. Besides the reviews of electric bicycles mentioned above, the rules for utilization of electric bicycles in some world areas are discussed.

Suggested Citation

  • Hung, Nguyen Ba & Lim, Ocktaeck, 2020. "A review of history, development, design and research of electric bicycles," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919320100
    DOI: 10.1016/j.apenergy.2019.114323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919320100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2018. "The death of a transport regime? The future of electric bicycles and transportation pathways for sustainable mobility in China," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 255-267.
    2. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    3. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    4. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    5. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    6. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    7. Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
    8. Bucher, Dominik & Buffat, René & Froemelt, Andreas & Raubal, Martin, 2019. "Energy and greenhouse gas emission reduction potentials resulting from different commuter electric bicycle adoption scenarios in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Hung, Nguyen Ba & Sung, Jaewon & Lim, Ocktaeck, 2018. "A simulation and experimental study of operating performance of an electric bicycle integrated with a semi-automatic transmission," Applied Energy, Elsevier, vol. 221(C), pages 319-333.
    10. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    11. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arellano-Sánchez, Maria C. & Reyes-Reyes, Juan & Ponce-Silva, Mario & Olivares-Peregrino, Víctor & Astorga-Zaragoza, Carlos, 2020. "Static technologies associated with pedaling energy harvesting through rotary transducers, a review," Applied Energy, Elsevier, vol. 263(C).
    2. Patricija Bajec & Danijela Tuljak-Suban & Eva Zalokar, 2021. "A Distance-Based AHP-DEA Super-Efficiency Approach for Selecting an Electric Bike Sharing System Provider: One Step Closer to Sustainability and a Win–Win Effect for All Target Groups," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    3. Feifei Xin & Yifan Chen & Yitong Ye, 2022. "Understanding Electric Bicycle Users’ Mode Choice Preference under Uncertainty: A Case Study of Shanghai," Sustainability, MDPI, vol. 14(2), pages 1-13, January.
    4. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    5. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    6. Nenad Djokic & Nikola Milicevic & Branimir Kalas & Ines Djokic & Vera Mirovic, 2023. "E-Bicycle as a Green and Physically Active Mode of Transport from the Aspect of Students: TPB and Financial Incentives," IJERPH, MDPI, vol. 20(3), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung, Nguyen Ba & Sung, Jaewon & Lim, Ocktaeck, 2018. "A simulation and experimental study of operating performance of an electric bicycle integrated with a semi-automatic transmission," Applied Energy, Elsevier, vol. 221(C), pages 319-333.
    2. Bretones, Alexandra & Marquet, Oriol, 2022. "Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review," Transport Policy, Elsevier, vol. 127(C), pages 230-249.
    3. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    4. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    5. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    6. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    7. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    8. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    9. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    10. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," Journal of Transport Geography, Elsevier, vol. 112(C).
    11. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    12. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    13. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    14. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    15. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    16. Michał Adam Kwiatkowski & Elżbieta Grzelak-Kostulska & Jadwiga Biegańska, 2021. "Could It Be a Bike for Everyone? The Electric Bicycle in Poland," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Nguyen Ba Hung & Ocktaeck Lim, 2020. "Effects of Design Parameters on Operating Characteristics of an Electric Assisted Bicycle Using Fuel Cell," Sustainability, MDPI, vol. 12(11), pages 1-12, June.
    18. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    19. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919320100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.