IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222004078.html
   My bibliography  Save this article

Optimal energy consumption and torque fluctuation control of integrated electric drive system based on mechanical-electromagnetic-thermal coupling characteristics

Author

Listed:
  • Hu, Jianjun
  • Deng, Chenghao
  • Yang, Dianzhao
  • Yang, Ying
  • Jia, Meixia

Abstract

Integrated electric drive system (IEDS) is a strong nonlinear electromagnetic-mechanical-thermal multi-field coupled system. Owing to the action of multi-field coupling, the traditional control strategy not only fails to fully exploit the performance of IEDS, but also reduces the adaptability and increases torque ripple. To solve this problem, this paper proposes an improved control strategy, in the multi-coupling field, which can reduce energy consumption and torque fluctuation of IEDS based on the torque, speed and temperature three-parameter query table. Firstly, the mechanical-electromagnetic-thermal coupling dynamic model is established in the coupled field-circuit simulation, moreover its performance is studied at different temperatures using traditional control strategy. Special attention is given to the defects of the traditional control strategy with respect to motor energy loss and torque fluctuation control in the multi-coupling field and the development of new strategies to overcame these defects. Simulation and experiments show that, compared with the traditional control strategy, the proposed control strategy can not only improve the efficiency of IEDS by 3.61% under mechanical-electromagnetic-thermal coupling, but also reduce the torque fluctuation caused by current harmonics and improve the dynamic adaptability.

Suggested Citation

  • Hu, Jianjun & Deng, Chenghao & Yang, Dianzhao & Yang, Ying & Jia, Meixia, 2022. "Optimal energy consumption and torque fluctuation control of integrated electric drive system based on mechanical-electromagnetic-thermal coupling characteristics," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004078
    DOI: 10.1016/j.energy.2022.123504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222004078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jianjun & Guo, Qi & Sun, Zhicheng & Yang, Dianzhao, 2023. "Study on low-frequency torsional vibration suppression of integrated electric drive system considering nonlinear factors," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    2. Hung, Nguyen Ba & Lim, Ocktaeck, 2020. "A review of history, development, design and research of electric bicycles," Applied Energy, Elsevier, vol. 260(C).
    3. Hung, Nguyen Ba & Sung, Jaewon & Lim, Ocktaeck, 2018. "A simulation and experimental study of operating performance of an electric bicycle integrated with a semi-automatic transmission," Applied Energy, Elsevier, vol. 221(C), pages 319-333.
    4. Peikun Sun & Annika Stensson Trigell & Lars Drugge & Jenny Jerrelind, 2020. "Energy-Efficient Direct Yaw Moment Control for In-Wheel Motor Electric Vehicles Utilising Motor Efficiency Maps," Energies, MDPI, vol. 13(3), pages 1-25, January.
    5. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    6. Trancho, E. & Ibarra, E. & Arias, A. & Kortabarria, I. & Prieto, P. & Martínez de Alegría, I. & Andreu, J. & López, I., 2018. "Sensorless control strategy for light-duty EVs and efficiency loss evaluation of high frequency injection under standardized urban driving cycles," Applied Energy, Elsevier, vol. 224(C), pages 647-658.
    7. Liu, Qin & Zhang, Wencan & Zhang, Zhongbo & Qin, Qichao, 2022. "A drive system global control strategy for electric vehicle based on optimized acceleration curve," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222004078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.