IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p495-d310755.html
   My bibliography  Save this article

Research on Additional Control Technology Based on Energy Storage System for Improving Power Transfer Capacity of Multi-Terminal AC/DC System with Low Cost

Author

Listed:
  • Zheng Wu

    (State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China)

  • Laifu Li

    (Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China)

  • Yubo Yuan

    (Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China)

  • Xiaodong Yuan

    (Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China)

  • Chenyu Zhang

    (Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China)

  • Li Kong

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    The School of Electronic, Electrical and Communication Engineering (EECE), University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wei Pei

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    The School of Electronic, Electrical and Communication Engineering (EECE), University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wei Deng

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    The School of Electronic, Electrical and Communication Engineering (EECE), University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The multi-terminal AC/DC system will become one of the important forms of the future power grid. The negative impedance characteristic caused by the constant power load in the DC network will reduce the power transfer capacity between the terminals, especially when a grid fault occurs in AC system at any terminal. Energy storage has played an important role in improving the stability of AC and DC systems. This paper proposes an additional control method based on an energy storage system to improve system power transfer capacity with low cost. The state space model of two-terminal AC/DC system is established, and the feedback laws for additional control are further designed by Lyapunov theory. Furthermore, the additional control strategies based on the energy storage system is built, without changing the existing control system of each control object. Finally, the corresponding system simulation model is established by Matlab/Simulink for analysis and verification. The research results show that the proposed additional control method is effective. The power transfer limitation can be overcome by only adding small damping energy with the stable DC voltages under large disturbances, and the power transfer capacity between the terminals can be significantly improved with low control cost.

Suggested Citation

  • Zheng Wu & Laifu Li & Yubo Yuan & Xiaodong Yuan & Chenyu Zhang & Li Kong & Wei Pei & Wei Deng, 2020. "Research on Additional Control Technology Based on Energy Storage System for Improving Power Transfer Capacity of Multi-Terminal AC/DC System with Low Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:495-:d:310755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongwei Wu & Fabrice Locment & Manuela Sechilariu, 2019. "Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid," Energies, MDPI, vol. 12(7), pages 1-12, March.
    2. Jongbok Baek & Wooin Choi & Suyong Chae, 2017. "Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Hui Wang & Tengxin Wang & Xiaohan Xie & Zhixiang Ling & Guoliang Gao & Xu Dong, 2018. "Optimal Capacity Configuration of a Hybrid Energy Storage System for an Isolated Microgrid Using Quantum-Behaved Particle Swarm Optimization," Energies, MDPI, vol. 11(2), pages 1-14, February.
    4. Wei Deng & Wei Pei & Luyang Li, 2018. "Active Stabilization Control of Multi-Terminal AC/DC Hybrid System Based on Flexible Low-Voltage DC Power Distribution," Energies, MDPI, vol. 11(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2019. "A Method to Enhance the Global Efficiency of High-Power Photovoltaic Inverters Connected in Parallel," Energies, MDPI, vol. 12(11), pages 1-19, June.
    2. Mahdi Shahparasti & Pedro Catalán & Nurul Fazlin Roslan & Joan Rocabert & Raúl-Santiago Muñoz-Aguilar & Alvaro Luna, 2018. "Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions," Energies, MDPI, vol. 11(3), pages 1-21, February.
    3. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    4. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    5. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    6. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim & Huy Nguyen-Duc, 2018. "Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications," Energies, MDPI, vol. 11(9), pages 1-21, August.
    7. Yuqi Wang & Qingshan Xu & Zhoujun Ma & Hong Zhu, 2017. "An Improved Control and Energy Management Strategy of Three-Level NPC Converter Based DC Distribution Network," Energies, MDPI, vol. 10(10), pages 1-19, October.
    8. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    9. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    10. Pablo Quintana-Barcia & Tomislav Dragicevic & Jorge Garcia & Javier Ribas & Josep M. Guerrero, 2018. "A Distributed Control Strategy for Islanded Single-Phase Microgrids with Hybrid Energy Storage Systems Based on Power Line Signaling," Energies, MDPI, vol. 12(1), pages 1-16, December.
    11. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    12. Tiago Lukasievicz & Ricardo Oliveira & César Torrico, 2018. "A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation," Energies, MDPI, vol. 11(2), pages 1-17, February.
    13. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    14. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    15. Carlos Andrés Ramos-Paja & Juan David Bastidas-Rodríguez & Daniel González & Santiago Acevedo & Julián Peláez-Restrepo, 2017. "Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids," Energies, MDPI, vol. 10(11), pages 1-26, November.
    16. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    17. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
    18. Jinhong Ahn & Eel-Hwan Kim, 2019. "Implementation of a Microgrid Scheme Using a MVDC Connection between Gapado Island and Marado Island in South Korea," Energies, MDPI, vol. 12(1), pages 1-22, January.
    19. Alfredo Padilla-Medina & Francisco Perez-Pinal & Alonso Jimenez-Garibay & Antonio Vazquez-Lopez & Juan Martinez-Nolasco, 2020. "Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid," Energies, MDPI, vol. 13(16), pages 1-30, August.
    20. Jianquan Liao & Niancheng Zhou & Qianggang Wang, 2018. "Design of Low-Ripple and Fast-Response DC Filters in DC Distribution Networks," Energies, MDPI, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:495-:d:310755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.