IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1233-d218630.html
   My bibliography  Save this article

Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid

Author

Listed:
  • Hongwei Wu

    (Sorbonne University, Université de Technologie de Compiègne, EA 7284 AVENUES, 60203 Compiègne, France)

  • Fabrice Locment

    (Sorbonne University, Université de Technologie de Compiègne, EA 7284 AVENUES, 60203 Compiègne, France)

  • Manuela Sechilariu

    (Sorbonne University, Université de Technologie de Compiègne, EA 7284 AVENUES, 60203 Compiègne, France)

Abstract

The intermittent and highly variable nature of photovoltaic (PV) sources is always the major obstacle to the growth of their deployment. Research work is increasingly demonstrating that PV generation should not only be maximized but also flexible based on the system requirements. This article presents a simple and flexible PV control mechanism, which can seamlessly switch between maximum power point tracking mode and power limiting mode. It can be integrated into a DC microgrid for efficient energy management. The proposed mechanism has two configurations that respectively converge to a lower and a higher PV panel voltage to perform PV shedding. The experimental validation carried out in this study shows that this control can effectively adjust the PV generation despite some physical constraints. The limitations of the control mechanism and the energy efficiency are also analyzed. It can be concluded that each configuration can be particularly useful depending on the different application scenarios.

Suggested Citation

  • Hongwei Wu & Fabrice Locment & Manuela Sechilariu, 2019. "Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid," Energies, MDPI, vol. 12(7), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1233-:d:218630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baranes, Edmond & Jacqmin, Julien & Poudou, Jean-Christophe, 2017. "Non-renewable and intermittent renewable energy sources: Friends and foes?," Energy Policy, Elsevier, vol. 111(C), pages 58-67.
    2. Jo, J.H. & Aldeman, M.R. & Loomis, D.G., 2018. "Optimum penetration of regional utility-scale renewable energy systems," Renewable Energy, Elsevier, vol. 118(C), pages 328-334.
    3. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    4. Hongwei Wu & Manuela Sechilariu & Fabrice Locment, 2017. "Influence of Dynamic Efficiency in the DC Microgrid Power Balance," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Houssamo, Issam & Locment, Fabrice & Sechilariu, Manuela, 2010. "Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms," Renewable Energy, Elsevier, vol. 35(10), pages 2381-2387.
    6. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    7. Yan, Ruifeng & Saha, Tapan Kumar & Modi, Nilesh & Masood, Nahid-Al & Mosadeghy, Mehdi, 2015. "The combined effects of high penetration of wind and PV on power system frequency response," Applied Energy, Elsevier, vol. 145(C), pages 320-330.
    8. Manuela Sechilariu & Fabrice Locment & Baochao Wang, 2015. "Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid," Energies, MDPI, vol. 8(8), pages 1-23, July.
    9. Li, Yujun & Xu, Zhao & Xiong, Liansong & Song, Guobing & Zhang, Jianliang & Qi, Donglian & Yang, Hongming, 2019. "A cascading power sharing control for microgrid embedded with wind and solar generation," Renewable Energy, Elsevier, vol. 132(C), pages 846-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Padilla-Medina & Francisco Perez-Pinal & Alonso Jimenez-Garibay & Antonio Vazquez-Lopez & Juan Martinez-Nolasco, 2020. "Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid," Energies, MDPI, vol. 13(16), pages 1-30, August.
    2. Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2019. "A Method to Enhance the Global Efficiency of High-Power Photovoltaic Inverters Connected in Parallel," Energies, MDPI, vol. 12(11), pages 1-19, June.
    3. Zheng Wu & Laifu Li & Yubo Yuan & Xiaodong Yuan & Chenyu Zhang & Li Kong & Wei Pei & Wei Deng, 2020. "Research on Additional Control Technology Based on Energy Storage System for Improving Power Transfer Capacity of Multi-Terminal AC/DC System with Low Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    5. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    3. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Victor Vega-Garita & Muhammad Faizal Sofyan & Nishant Narayan & Laura Ramirez-Elizondo & Pavol Bauer, 2018. "Energy Management System for the Photovoltaic Battery Integrated Module," Energies, MDPI, vol. 11(12), pages 1-20, December.
    5. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    7. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    8. Lopez, Hector K. & Zilouchian, Ali, 2023. "Peer-to-peer energy trading for photo-voltaic prosumers," Energy, Elsevier, vol. 263(PA).
    9. Hortay, Olivér & Rozner, Bence Péter, 2019. "Allocating renewable subsidies," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 236-247.
    10. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    11. Zhang, M.M. & Zhang, C. & Liu, L.Y. & Zhou, D.Q., 2020. "Is it time to launch grid parity in the Chinese solar photovoltaic industry? Evidence from 335 cities," Energy Policy, Elsevier, vol. 147(C).
    12. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    13. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    14. Fu, Zaiguo & Li, Yongwei & Liang, Xiaotian & Lou, Shang & Qiu, Zhongzhu & Cheng, Zhiyuan & Zhu, Qunzhi, 2021. "Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs," Energy, Elsevier, vol. 228(C).
    15. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    16. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    17. Colmenar-Santos, Antonio & Muñoz-Gómez, Antonio-Miguel & Rosales-Asensio, Enrique & López-Rey, África, 2019. "Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario," Energy, Elsevier, vol. 183(C), pages 61-74.
    18. Ziyu Wang & Guangya Yang, 2019. "Static Operational Impacts of Residential Solar PV Plants on the Medium Voltage Distribution Grids—A Case Study Based on the Danish Island Bornholm," Energies, MDPI, vol. 12(8), pages 1-16, April.
    19. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    20. Elaine Fouché & Alan Brent, 2019. "Journey towards Renewable Energy for Sustainable Development at the Local Government Level: The Case of Hessequa Municipality in South Africa," Sustainability, MDPI, vol. 11(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1233-:d:218630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.