IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8851-d982031.html
   My bibliography  Save this article

Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review

Author

Listed:
  • Sohail Sarwar

    (School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

  • Desen Kirli

    (School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

  • Michael M. C. Merlin

    (School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

  • Aristides E. Kiprakis

    (School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK)

Abstract

A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.

Suggested Citation

  • Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8851-:d:982031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaling Chen & Luxi Hao & Gaowen Yin & Chun Wei, 2021. "Distributed Energy Management of the Hybrid AC/DC Microgrid with High Penetration of Distributed Energy Resources Based on ADMM," Complexity, Hindawi, vol. 2021, pages 1-9, September.
    2. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.
    3. Thanh Hai Nguyen & Tan Luong Van & Asif Nawaz & Ammar Natsheh, 2021. "Feedback Linearization-Based Control Strategy for Interlinking Inverters of Hybrid AC/DC Microgrids with Seamless Operation Mode Transition," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Stephen Whaite & Brandon Grainger & Alexis Kwasinski, 2015. "Power Quality in DC Power Distribution Systems and Microgrids," Energies, MDPI, vol. 8(5), pages 1-22, May.
    5. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    6. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    7. Brearley, Belwin J. & Prabu, R. Raja, 2017. "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 988-997.
    8. Malik, Sarmad Majeed & Sun, Yingyun & Huang, Wen & Ai, Xin & Shuai, Zhikang, 2018. "A Generalized Droop Strategy for Interlinking Converter in a Standalone Hybrid Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 1056-1063.
    9. Angalaeswari Sendraya Perumal & Jamuna Kamaraj, 2020. "Coordinated Control of Aichi Microgrid for Efficient Power Management Using Novel Set Point Weighting Iterative Learning Controller," Energies, MDPI, vol. 13(3), pages 1-22, February.
    10. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    11. Ke Jiang & Feng Wu & Linjun Shi & Keman Lin, 2020. "Distributed Hierarchical Consensus-Based Economic Dispatch for Isolated AC/DC Hybrid Microgrid," Energies, MDPI, vol. 13(12), pages 1-23, June.
    12. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    13. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    14. Can Wang & Can Deng & Guiyuan Li, 2022. "Control Strategy of Interlinking Converter in Hybrid Microgrid Based on Line Impedance Estimation," Energies, MDPI, vol. 15(5), pages 1-16, February.
    15. Wei Deng & Wei Pei & Luyang Li, 2018. "Active Stabilization Control of Multi-Terminal AC/DC Hybrid System Based on Flexible Low-Voltage DC Power Distribution," Energies, MDPI, vol. 11(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwa Elsherif, 2024. "Nexus between Blue Economy, Renewable Energy and Environmental Sustainability in the MENA Region: Evidence from Panel Threshold Regression," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 169-185, July.
    2. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Ahmed Rashwan & Alexey Mikhaylov & Tomonobu Senjyu & Mahdiyeh Eslami & Ashraf M. Hemeida & Dina S. M. Osheba, 2023. "Modified Droop Control for Microgrid Power-Sharing Stability Improvement," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    4. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    2. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    3. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    4. Mirsaeidi, Sohrab & Dong, Xinzhou & Said, Dalila Mat, 2018. "Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 97-103.
    5. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    6. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    7. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    8. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    9. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    11. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    12. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    13. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    14. Vitor Monteiro & Julio S. Martins & João Carlos Aparício Fernandes & Joao L. Afonso, 2021. "Review of a Disruptive Vision of Future Power Grids: A New Path Based on Hybrid AC/DC Grids and Solid-State Transformers," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    15. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    16. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    17. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    18. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    19. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    20. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8851-:d:982031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.