IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p968-d104295.html
   My bibliography  Save this article

The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors

Author

Listed:
  • Jingmin Wang

    (School of Economics and Management, North China Electric Power University, Baoding 071003, China)

  • Wenhai Yang

    (School of Economics and Management, North China Electric Power University, Baoding 071003, China)

  • Huaxin Cheng

    (State Grid Longyan Electric Power Company, Longyan 364000, China)

  • Lingyu Huang

    (State Grid Longyan Electric Power Company, Longyan 364000, China)

  • Yajing Gao

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

A virtual power plant (VPP) is a special virtual unit that integrates various distributed energy resources (DERs) distributed in the generation and consumption sides. The optimal configuration scheme of the VPP needs to break the geographical restrictions to make full use of DERs, considering the uncertainties. First, the components of the DERs and the structure of the VPP are briefly introduced. Next, the cubic exponential smoothing method is adopted to predict the VPP load requirement. Finally, the optimal configuration of the DER capacities inside the VPP is calculated by using portfolio theory and genetic algorithms (GA). The results show that the configuration scheme can optimize the DER capacities considering uncertainties, guaranteeing economic benefits of investors, and fully utilizing the DERs. Therefore, this paper provides a feasible reference for the optimal configuration scheme of the VPP from the perspective of investors.

Suggested Citation

  • Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:968-:d:104295
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Dolara & Francesco Grimaccia & Giulia Magistrati & Gabriele Marchegiani, 2017. "Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming," Energies, MDPI, vol. 10(2), pages 1-20, February.
    2. Kumar Mahesh & Perumal Nallagownden & Irraivan Elamvazuthi, 2016. "Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation," Energies, MDPI, vol. 9(12), pages 1-23, November.
    3. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 428-439.
    4. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Dong Ryeol Shin, 2017. "Multi-Objective Planning Techniques in Distribution Networks: A Composite Review," Energies, MDPI, vol. 10(2), pages 1-44, February.
    6. Jongbok Baek & Wooin Choi & Suyong Chae, 2017. "Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    7. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2017. "Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations," Renewable Energy, Elsevier, vol. 101(C), pages 1311-1324.
    8. Yajing Gao & Huaxin Cheng & Jing Zhu & Haifeng Liang & Peng Li, 2016. "The Optimal Dispatch of a Power System Containing Virtual Power Plants under Fog and Haze Weather," Sustainability, MDPI, vol. 8(1), pages 1-22, January.
    9. Chi Cao & Jun Xie & Dong Yue & Chongxin Huang & Jixiang Wang & Shuyang Xu & Xingying Chen, 2017. "Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network," Energies, MDPI, vol. 10(2), pages 1-18, February.
    10. Mohsin Shahzad & Ishtiaq Ahmad & Wolfgang Gawlik & Peter Palensky, 2016. "Load Concentration Factor Based Analytical Method for Optimal Placement of Multiple Distribution Generators for Loss Minimization and Voltage Profile Improvement," Energies, MDPI, vol. 9(4), pages 1-21, April.
    11. Jinxia Gong & Da Xie & Chuanwen Jiang & Yanchi Zhang, 2011. "Multiple Objective Compromised Method for Power Management in Virtual Power Plants," Energies, MDPI, vol. 4(4), pages 1-17, April.
    12. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    13. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    2. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
    3. Henri van Soest, 2018. "Peer-to-peer electricity trading: A review of the legal context," Competition and Regulation in Network Industries, , vol. 19(3-4), pages 180-199, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    2. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    3. Mahesh Kumar & Perumal Nallagownden & Irraivan Elamvazuthi, 2017. "Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems," Energies, MDPI, vol. 10(6), pages 1-25, June.
    4. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    6. Seyed Siavash Karimi Madahi & Andrija T. Sarić, 2020. "Multi-Criteria Optimal Sizing and Allocation of Renewable and Non-Renewable Distributed Generation Resources at 63 kV/20 kV Substations," Energies, MDPI, vol. 13(20), pages 1-22, October.
    7. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    8. Manur, Ashray & Venkataramanan, Giri & Sehloff, David, 2018. "Simple electric utility platform: A hardware/software solution for operating emergent microgrids," Applied Energy, Elsevier, vol. 210(C), pages 748-763.
    9. Mohsin Shahzad & Waseem Akram & Muhammad Arif & Uzair Khan & Barkat Ullah, 2021. "Optimal Siting and Sizing of Distributed Generators by Strawberry Plant Propagation Algorithm," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Muhammad Waqas Khalil & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Dong Ryeol Shin, 2022. "Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach," Sustainability, MDPI, vol. 15(1), pages 1-40, December.
    12. Tatiana González Grandón & Fernando de Cuadra García & Ignacio Pérez-Arriaga, 2021. "A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids," Energies, MDPI, vol. 14(23), pages 1-29, November.
    13. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Paschalis A. Gkaidatzis & Athanasios Tryferidis & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "OptiMEMS: An Adaptive Lightweight Optimal Microgrid Energy Management System Based on the Novel Virtual Distributed Energy Resources in Real-Life Demonstration," Energies, MDPI, vol. 14(10), pages 1-19, May.
    16. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    17. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    18. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    19. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    20. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:968-:d:104295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.