IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222014657.html
   My bibliography  Save this article

Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China

Author

Listed:
  • Xu, Jiuping
  • Zhao, Chuandang
  • Wang, Fengjuan
  • Yang, Guocan

Abstract

Using the floor area in the wastewater treatment sector to deploy distributed renewable energy is economical and can assist in industrial decarbonisation; however, little attention has been paid to study of the ideal capacity. This study proposes a grid-connected wind-solar-storage system scheme for retrofitting existing wastewater treatment plants (WWTPs) and explores its regional potential. Seven treatment scales of WWTPs are classified, and the electricity consumption and available layout areas are estimated using fuzzy numbers. A multi-objective model with economic, technological, and environmental considerations is built and then solved using the ϵ -constraint method. A case study in the Yangtze River Delta region in China is conducted to demonstrate the effectiveness of the proposed method. Results show that the installed capacity is 5.9 GW and that the levelized cost of electricity in the seven categories reflects a ‘V’ shape. The regression equations of the optimal potential, treatment scale, and layout area are identified. Further, scenarios in which export to the main grid is permitted and not permitted are discussed, and a four-step implementation strategy is proposed. This study provides an effective method for governments to improve space utilisation and energy decarbonisation in the industrial sector.

Suggested Citation

  • Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014657
    DOI: 10.1016/j.energy.2022.124562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    2. Di Salvo, Matteo & Wei, Max, 2019. "Synthesis of natural gas from thermochemical and power-to-gas pathways for industrial sector decarbonization in California," Energy, Elsevier, vol. 182(C), pages 1250-1264.
    3. Hongwei Wu & Fabrice Locment & Manuela Sechilariu, 2019. "Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid," Energies, MDPI, vol. 12(7), pages 1-12, March.
    4. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    5. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    6. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    7. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2020. "Multi-objective evolutionary algorithms for a reliability location problem," European Journal of Operational Research, Elsevier, vol. 283(1), pages 83-93.
    8. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    9. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    10. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    11. Lin, Jinchai & Fan, Ruguo & Tan, Xianchun & Zhu, Kaiwei, 2021. "Dynamic decision and coordination in a low-carbon supply chain considering the retailer's social preference," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    12. Xiaowei Tong & Martin Brandt & Yuemin Yue & Philippe Ciais & Martin Rudbeck Jepsen & Josep Penuelas & Jean-Pierre Wigneron & Xiangming Xiao & Xiao-Peng Song & Stephanie Horion & Kjeld Rasmussen & Sass, 2020. "Forest management in southern China generates short term extensive carbon sequestration," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    13. David Griggs & Mark Stafford-Smith & Owen Gaffney & Johan Rockström & Marcus C. Öhman & Priya Shyamsundar & Will Steffen & Gisbert Glaser & Norichika Kanie & Ian Noble, 2013. "Sustainable development goals for people and planet," Nature, Nature, vol. 495(7441), pages 305-307, March.
    14. Scott Spillias & Peter Kareiva & Mary Ruckelshaus & Eve McDonald-Madden, 2020. "Renewable energy targets may undermine their sustainability," Nature Climate Change, Nature, vol. 10(11), pages 974-976, November.
    15. Caleb K. Miskin & Yiru Li & Allison Perna & Ryan G. Ellis & Elizabeth K. Grubbs & Peter Bermel & Rakesh Agrawal, 2019. "Sustainable co-production of food and solar power to relax land-use constraints," Nature Sustainability, Nature, vol. 2(10), pages 972-980, October.
    16. Wang, Fengjuan & Xu, Jiuping & Liu, Liying & Yin, Guangming & Wang, Jianhua & Yan, Jinyue, 2021. "Optimal design and operation of hybrid renewable energy system for drinking water treatment," Energy, Elsevier, vol. 219(C).
    17. Seker, Sukran & Kahraman, Cengiz, 2021. "Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    18. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    19. Wu, Wei & Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2021. "Regional low carbon development pathways for the Yangtze River Delta region in China," Energy Policy, Elsevier, vol. 151(C).
    20. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    21. Brandi McKuin & Andrew Zumkehr & Jenny Ta & Roger Bales & Joshua H. Viers & Tapan Pathak & J. Elliott Campbell, 2021. "Energy and water co-benefits from covering canals with solar panels," Nature Sustainability, Nature, vol. 4(7), pages 609-617, July.
    22. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    23. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    24. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    25. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianqian Shi & Ziyu Wang & Boya Li & Marcel Hertogh & Shuyi Wang, 2022. "Evolutionary Analysis of Prefabrication Implementation in Construction Projects under Low-Carbon Policies," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    2. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    2. Moazeni, Faegheh & Khazaei, Javad, 2021. "Co-optimization of wastewater treatment plants interconnected with smart grids," Applied Energy, Elsevier, vol. 298(C).
    3. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    4. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    5. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    6. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    7. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-45, June.
    11. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    12. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    13. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    16. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    17. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    18. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    19. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Beatriz Del Río-Gamero & Alejandro Ramos-Martín & Noemi Melián-Martel & Sebastián Pérez-Báez, 2020. "Water-Energy Nexus: A Pathway of Reaching the Zero Net Carbon in Wastewater Treatment Plants," Sustainability, MDPI, vol. 12(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.