IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5786-d440231.html
   My bibliography  Save this article

Dynamic Modeling and Simulation of Non-Interconnected Systems under High-RES Penetration: The Madeira Island Case

Author

Listed:
  • Stefanos Ntomalis

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece)

  • Petros Iliadis

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece
    Department of Electrical Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Konstantinos Atsonios

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece)

  • Athanasios Nesiadis

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece)

  • Nikos Nikolopoulos

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece)

  • Panagiotis Grammelis

    (Centre for Research and Technology Hellas/Chemical Process and Energy Resources Institute, 57001 Thessaloniki, Greece)

Abstract

The defossilization of power generation is a prerequisite goal in order to reduce greenhouse gas emissions and transit for a sustainable economy. Achieving this goal requires increasing the penetration of renewable energy sources (RESs) such as solar and wind power. The gradual shrinking of conventional generation units in an energy map introduces new challenges to the stability of power systems as there is a considerable reduction of stored rotational energy in the synchronous generators (SGs) and the capability to control their power output, which has been taken for granted until today. Inertia and primary reserve reduction have a substantial effect on the ability of the power system to maintain its security and self-resilience during contingency events. Such issues become more evident in the case of non-interconnected islands (NII) as they have unique features associated with their small size and low inertia. The present study examines in depth the NII system of Madeira, which is composed of thermal, hydro, solid-waste, wind and solar generation units, and additional RES integration is planned for the near future. Electromagnetic transient (EMT) simulations are performed for both the current and future states of the system, including the installation of planned variable RES capacities. To alleviate the stability issues that occurred in the high-RES scenario, the introduction of a utility-scale battery energy storage system (BESS), capable of mitigating the active power imbalance due to the power system’s disturbances resultant of RES penetration, is examined. In addition, a comparison between a flywheel energy storage system (FESS) and BESS is shortly investigated. The grid has been modeled and simulated utilizing the open-source, object-oriented modeling language Modelica. The dynamic simulation results proved that battery storage is a promising technology that can be a solution for transitioning to a sustainable power system, maintaining its self-resilience under severe disturbances such as rapid load changes, the tripping of generation units and short-circuits.

Suggested Citation

  • Stefanos Ntomalis & Petros Iliadis & Konstantinos Atsonios & Athanasios Nesiadis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Dynamic Modeling and Simulation of Non-Interconnected Systems under High-RES Penetration: The Madeira Island Case," Energies, MDPI, vol. 13(21), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5786-:d:440231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    2. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    2. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    3. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    4. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    5. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    7. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    8. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, vol. 12(9), pages 1-15, April.
    10. Manuel Uche-Soria & Carlos Rodríguez-Monroy, 2018. "Special Regulation of Isolated Power Systems: The Canary Islands, Spain," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    11. Grażyna Frydrychowicz-Jastrzębska, 2018. "El Hierro Renewable Energy Hybrid System: A Tough Compromise," Energies, MDPI, vol. 11(10), pages 1-20, October.
    12. Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.
    13. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    14. Julia Merino & Patricio Mendoza-Araya & Carlos Veganzones, 2014. "State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems," Energies, MDPI, vol. 7(12), pages 1-19, November.
    15. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    16. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    17. Fauzan Hanif Jufri & Jaesung Jung & Budi Sudiarto & Iwa Garniwa, 2023. "Development of Virtual Inertia Control with State-of-Charge Recovery Strategy Using Coordinated Secondary Frequency Control for Optimized Battery Capacity in Isolated Low Inertia Grid," Energies, MDPI, vol. 16(14), pages 1-22, July.
    18. Zhishuai Hu & Yongfeng Ren & Qingtian Meng & Pingping Yun & Chenzhi Fang & Yu Pan, 2023. "Improvement of Frequency Support for a DFIG Using a Virtual Synchronous Generator Strategy at Large Power Angles," Energies, MDPI, vol. 16(2), pages 1-20, January.
    19. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5786-:d:440231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.