IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p914-d1034890.html
   My bibliography  Save this article

Improvement of Frequency Support for a DFIG Using a Virtual Synchronous Generator Strategy at Large Power Angles

Author

Listed:
  • Zhishuai Hu

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Yongfeng Ren

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Qingtian Meng

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Pingping Yun

    (Inner Mongolia Guotian New Energy Technology Co., Ltd., Hohhot 010051, China)

  • Chenzhi Fang

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Yu Pan

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

Abstract

The frequency regulation rate and operation stability of a doubly fed induction generator (DFIG) based on a virtual synchronous generator (VSG) strategy decreases under large-power-angle conditions, which reduces the grid frequency support capacity. This paper proposes the compound adaptive parameter (CAP) and coordinated primary frequency regulation (CPFR) strategies to improve the grid frequency support capacity in terms of multiple dimensions of the transient properties, operation condition range, and regulation duration. Mathematical and small signal models of the DFIG-VSG system are constructed. The effect of large-power-angle conditions on the transient properties under grid frequency perturbations is analyzed based on these models, and the CAP strategy for excitation control and virtual damping is formulated. The constraints of the rotor kinetic energy and the load increase capacity of the grid-side converter are analyzed, and the CPFR strategy is formulated based on this. Finally, the effectiveness of the proposed strategies is verified via simulations of single-machine and wind farm scenarios under grid frequency perturbation.

Suggested Citation

  • Zhishuai Hu & Yongfeng Ren & Qingtian Meng & Pingping Yun & Chenzhi Fang & Yu Pan, 2023. "Improvement of Frequency Support for a DFIG Using a Virtual Synchronous Generator Strategy at Large Power Angles," Energies, MDPI, vol. 16(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:914-:d:1034890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangwu Yan & Xuewei Sun, 2020. "Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    4. Dezhi Ma & Wenyi Li, 2022. "Wind-Storage Combined Virtual Inertial Control Based on Quantization and Regulation Decoupling of Active Power Increments," Energies, MDPI, vol. 15(14), pages 1-20, July.
    5. Jun Deng & Jianbo Wang & Shupeng Li & Haijing Zhang & Shutao Peng & Tong Wang, 2020. "Adaptive Damping Design of PMSG Integrated Power System with Virtual Synchronous Generator Control," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingming Zhao & Xiaolong Hao & Kai Zhang & Yuanyuan Li & Guanghui Zhang, 2023. "Investigation of the Vibration Transmission Characteristics of the Aero-Engine Casing System by Rotating Force Exciter," Energies, MDPI, vol. 16(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SungHoon Lim & Seung-Mook Baek & Jung-Wook Park, 2022. "Selection of Inertial and Power Curtailment Control Methods for Wind Power Plants to Enhance Frequency Stability," Energies, MDPI, vol. 15(7), pages 1-14, April.
    2. Thongchart Kerdphol & Masayuki Watanabe & Yasunori Mitani & Veena Phunpeng, 2019. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables," Energies, MDPI, vol. 12(20), pages 1-16, October.
    3. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    4. Natascia Andrenacci & Elio Chiodo & Davide Lauria & Fabio Mottola, 2018. "Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation," Energies, MDPI, vol. 11(12), pages 1-24, November.
    5. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    6. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    7. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    8. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Zihao Cheng & Songlin Hu & Jieting Ma, 2020. "Resilient Event-Triggered Control for LFC-VSG Scheme of Uncertain Discrete-Time Power System under DoS Attacks," Energies, MDPI, vol. 13(7), pages 1-21, April.
    10. Bo Feng & Peng Qian & Yulin Si & Xiaodong Liu & Haixiao Yang & Huisheng Wen & Dahai Zhang, 2020. "Comparative Investigations of Tidal Current Velocity Prediction Considering Effect of Multi-Layer Current Velocity," Energies, MDPI, vol. 13(23), pages 1-19, December.
    11. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    12. Welcome Khulekani Ntuli & Musasa Kabeya & Katleho Moloi, 2024. "Review of Low Voltage Ride-Through Capabilities in Wind Energy Conversion System," Energies, MDPI, vol. 17(21), pages 1-33, October.
    13. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    14. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    15. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.
    17. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    18. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    19. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    20. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:914-:d:1034890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.