IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5600-d435051.html
   My bibliography  Save this article

Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge

Author

Listed:
  • Saeed Mian Qaisar

    (Communications & Signal Processing Research Lab, Energy & Technology Research Center, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia)

Abstract

Lithium-ion batteries are deployed in a range of modern applications. Their utilization is evolving with the aim of achieving a greener environment. Batteries are costly, and battery management systems (BMSs) ensure long life and proper battery utilization. Modern BMSs are complex and cause a notable overhead consumption on batteries. In this paper, the time-varying aspect of battery parameters is used to reduce the power consumption overhead of BMSs. The aim is to use event-driven processing to realize effective BMSs. Unlike the conventional approach, parameters of battery cells, such as voltages and currents, are no longer regularly measured at a predefined time step and are instead recorded on the basis of events. This renders a considerable real-time compression. An inventive event-driven coulomb counting method is then presented, which employs the irregularly sampled data information for an effective online state of charge ( SOC ) determination. A high energy battery model for electric vehicle (EV) applications is studied in this work. It is implemented by using the equivalent circuit modeling (ECM) approach. A comparison of the developed framework is made with conventional fixed-rate counterparts. The results show that, in terms of compression and computational complexities, the devised solution surpasses the second order of magnitude gain. The SOC estimation error is also quantified, and the system attains a ≤4% SOC estimation error bound.

Suggested Citation

  • Saeed Mian Qaisar, 2020. "Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge," Energies, MDPI, vol. 13(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5600-:d:435051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelhakim Dendouga, 2020. "Conventional and Second Order Sliding Mode Control of Permanent Magnet Synchronous Motor Fed by Direct Matrix Converter: Comparative Study," Energies, MDPI, vol. 13(19), pages 1-14, September.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Peter M. Attia & Aditya Grover & Norman Jin & Kristen A. Severson & Todor M. Markov & Yang-Hung Liao & Michael H. Chen & Bryan Cheong & Nicholas Perkins & Zi Yang & Patrick K. Herring & Muratahan Ayko, 2020. "Closed-loop optimization of fast-charging protocols for batteries with machine learning," Nature, Nature, vol. 578(7795), pages 397-402, February.
    4. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    5. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    6. Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).
    7. Heubaum, Harald & Biermann, Frank, 2015. "Integrating global energy and climate governance: The changing role of the International Energy Agency," Energy Policy, Elsevier, vol. 87(C), pages 229-239.
    8. Zhongyue Zou & Jun Xu & Chris Mi & Binggang Cao & Zheng Chen, 2014. "Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries," Energies, MDPI, vol. 7(8), pages 1-18, August.
    9. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    10. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    11. Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
    12. Hu, Xiaosong & Jiang, Haifu & Feng, Fei & Liu, Bo, 2020. "An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management," Applied Energy, Elsevier, vol. 257(C).
    13. Pingwei Gu & Zhongkai Zhou & Shaofei Qu & Chenghui Zhang & Bin Duan, 2019. "Influence Analysis and Optimization of Sampling Frequency on the Accuracy of Model and State-of-Charge Estimation for LiNCM Battery," Energies, MDPI, vol. 12(7), pages 1-19, March.
    14. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    15. He, Hongwen & Zhang, Xiaowei & Xiong, Rui & Xu, Yongli & Guo, Hongqiang, 2012. "Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 39(1), pages 310-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Faheem Haroon & Muhammad Aamir & Asad Waqar & Saeed Mian Qaisar & Syed Umaid Ali & Abdulaziz Turki Almaktoom, 2022. "A Composite Exponential Reaching Law Based SMC with Rotating Sliding Surface Selection Mechanism for Two Level Three Phase VSI in Vehicle to Load Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
    3. Farah Mohammad & Kashif Saleem & Jalal Al-Muhtadi, 2023. "Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    5. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
    6. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    7. Gianfranco Di Lorenzo & Erika Stracqualursi & Rodolfo Araneo, 2022. "The Journey Towards the Energy Transition: Perspectives from the International Conference on Environment and Electrical Engineering (EEEIC)," Energies, MDPI, vol. 15(18), pages 1-5, September.
    8. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
    2. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    3. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
    4. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    7. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    8. Shen, Jiangwei & Ma, Wensai & Xiong, Jian & Shu, Xing & Zhang, Yuanjian & Chen, Zheng & Liu, Yonggang, 2022. "Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope," Energy, Elsevier, vol. 244(PB).
    9. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    11. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Hossam M. Hussein & Ahmed Aghmadi & Mahmoud S. Abdelrahman & S M Sajjad Hossain Rafin & Osama Mohammed, 2024. "A review of battery state of charge estimation and management systems: Models and future prospective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
    13. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    14. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    15. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    16. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    17. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    18. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    19. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    20. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5600-:d:435051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.