IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5241-d866522.html
   My bibliography  Save this article

ADRC-Based Habituating Control of Double-Heater Heat Source

Author

Listed:
  • Pawel Nowak

    (Department of Automatic Control and Robotics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Michal Fratczak

    (Department of Automatic Control and Robotics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Patryk Grelewicz

    (Department of Automatic Control and Robotics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Jacek Czeczot

    (Department of Automatic Control and Robotics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

This paper deals with the proposition of improvement in the performance of a heat source by modification of its structure and by deriving a dedicated control system. Traditional heat sources consist of a single heater of high nominal power, but slow dynamics, that is regulated by a single closed loop control system. In this paper, an existing heater serially-connected with a supplemental heater with low nominal power but fast dynamics is proposed. A dedicated control system was derived with two active disturbance rejection controllers (ADRC) implemented in the habituating control structure. The proposed solution was validated using a virtual commissioning procedure where the heating system was simulated in the SIEMENS ® Simit v10.3 industrial software, and ADRC controllers were implemented in SIEMENS ® PLCSIM Advanced using dedicated library function blocks. The results showed the superiority of the proposed approach in comparison with the traditional single closed loop solution. The proposed dedicated habituating control system provided better robustness to the changes in dynamics of a heat source and to the measurement noise. At the same time, it will ensure lower (or in some cases comparable) values of popular closed loop performance indices.

Suggested Citation

  • Pawel Nowak & Michal Fratczak & Patryk Grelewicz & Jacek Czeczot, 2022. "ADRC-Based Habituating Control of Double-Heater Heat Source," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5241-:d:866522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zenon Zwierzewicz & Lech Dorobczyński & Jarosław Artyszuk, 2021. "Design and Assessment of ADRC-Based Autopilot for Energy-Efficient Ship Steering," Energies, MDPI, vol. 14(23), pages 1-16, November.
    2. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobo Cui & Pan Xu & Guohui Song & Haiming Gu & Hui Gu & Liang Wang & Hongxia Zhu, 2022. "PID Control of a Superheated Steam Temperature System Based on Integral Gain Scheduling," Energies, MDPI, vol. 15(23), pages 1-16, November.
    2. Hui-Yu Jin & Yang Chen, 2023. "First-Order Linear Active Disturbance Rejection Control for Turbofan Engines," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    4. Pingyue Zhang & Jingyu Zhang & Yingshun Li & Yuhu Wu, 2020. "Nonlinear Active Disturbance Rejection Control of VGT-EGR System in Diesel Engines," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5241-:d:866522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.