IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1019-d1038676.html
   My bibliography  Save this article

Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications

Author

Listed:
  • Ahmed Abdelhak Smadi

    (Ecole Militaire Polytechnique, UER ELT, 16111 Algiers, Algeria)

  • Farid Khoucha

    (Ecole Militaire Polytechnique, UER ELT, 16111 Algiers, Algeria
    Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France)

  • Yassine Amirat

    (ISEN Yncréa Ouest, L@bISEN, 29200 Brest, France)

  • Abdeldjabar Benrabah

    (Ecole Militaire Polytechnique, UER ELT, 16111 Algiers, Algeria)

  • Mohamed Benbouzid

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France
    Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

Abstract

In this paper, a simplified and robust control strategy of an interleaved high gain DC/DC boost converter (IHGBC) is proposed in order to enhance DC bus voltage regulation in proton exchange membrane fuel cell (PEMFC) applications. The fluctuation of the energy source voltage and external load, and the change in system parameters lead to the instability of output voltage. Based on the creation of an average state space model of the DC/DC boost converter, the proposed controller is designed based on a linear active disturbance rejection control (LADRC), which has an external voltage loop and an internal current loop to meet the output voltage requirements under parameters uncertainties and disturbances. The effectiveness of the proposed approach strategy and its superiority were examined under different operating conditions and scenarios. Simulation and experiment results showed the efficiency and robustness of the suggested approach and the great effectiveness in the reference tracking and disturbance rejection.

Suggested Citation

  • Ahmed Abdelhak Smadi & Farid Khoucha & Yassine Amirat & Abdeldjabar Benrabah & Mohamed Benbouzid, 2023. "Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1019-:d:1038676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    2. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    3. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    4. Saadi, R. & Hammoudi, M.Y. & Kraa, O. & Ayad, M.Y. & Bahri, M., 2020. "A robust control of a 4-leg floating interleaved boost converter for fuel cell electric vehicle application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 32-47.
    5. Junnian Wang & Xiandong Wang & Zheng Luo & Francis Assadian, 2020. "Active Disturbance Rejection Control of Differential Drive Assist Steering for Electric Vehicles," Energies, MDPI, vol. 13(10), pages 1-22, May.
    6. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    7. Riccardo Chiumeo & Diego Raggini & Alessandro Veroni & Alessio Clerici, 2022. "Comparative Analysis of PI and ADRC Control through CHIL Real Time Simulations of a DC-DC DAB into a Multi-Terminal MVDC/LVDC Distribution Network," Energies, MDPI, vol. 15(20), pages 1-32, October.
    8. Hui Li & Yue Qu & Junwei Lu & Shuang Li, 2019. "A Composite Strategy for Harmonic Compensation in Standalone Inverter Based on Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(13), pages 1-18, July.
    9. V. Mounica & Y. P. Obulesu, 2022. "Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application," Energies, MDPI, vol. 15(12), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Blanca Viviana Martínez & Javier Sanchis & Sergio García-Nieto & Miguel Martínez, 2021. "Tuning Rules for Active Disturbance Rejection Controllers via Multiobjective Optimization—A Guide for Parameters Computation Based on Robustness," Mathematics, MDPI, vol. 9(5), pages 1-34, March.
    5. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    6. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    7. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    8. Seung-Taek Lim & Ki-Yeon Lee & Dong-Ju Chae & Sung-Hun Lim, 2022. "Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    10. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    11. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    12. Mehroze Iqbal & Amel Benmouna & Frederic Claude & Mohamed Becherif, 2023. "Efficient and Reliable Power-Conditioning Stage for Fuel Cell-Based High-Power Applications," Energies, MDPI, vol. 16(13), pages 1-15, June.
    13. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    15. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    16. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    17. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    18. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    19. Vesselin Krassimirov Krastev & Giacomo Falcucci, 2018. "Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method," Energies, MDPI, vol. 11(4), pages 1-14, March.
    20. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1019-:d:1038676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.