Comparative Analysis of On-Board Methane and Methanol Reforming Systems Combined with HT-PEM Fuel Cell and CO 2 Capture/Liquefaction System for Hydrogen Fueled Ship Application
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Leo, T.J. & Durango, J.A. & Navarro, E., 2010. "Exergy analysis of PEM fuel cells for marine applications," Energy, Elsevier, vol. 35(2), pages 1164-1171.
- Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
- Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
- Ersoz, Atilla & Olgun, Hayati & Ozdogan, Sibel, 2006. "Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming," Energy, Elsevier, vol. 31(10), pages 1490-1500.
- Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2014. "Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems," Energy, Elsevier, vol. 68(C), pages 989-997.
- Hajjaji, Noureddine & Pons, Marie-Noëlle & Houas, Ammar & Renaudin, Viviane, 2012. "Exergy analysis: An efficient tool for understanding and improving hydrogen production via the steam methane reforming process," Energy Policy, Elsevier, vol. 42(C), pages 392-399.
- Ribeirinha, P. & Abdollahzadeh, M. & Sousa, J.M. & Boaventura, M. & Mendes, A., 2017. "Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell," Applied Energy, Elsevier, vol. 202(C), pages 6-19.
- Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
- Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
- Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hossein Asgharian & Florin Iov & Samuel Simon Araya & Thomas Helmer Pedersen & Mads Pagh Nielsen & Ehsan Baniasadi & Vincenzo Liso, 2023. "A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment," Energies, MDPI, vol. 16(4), pages 1-35, February.
- Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Marcin Pajak & Grzegorz Brus & Janusz S. Szmyd, 2021. "Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming," Energies, MDPI, vol. 14(17), pages 1-14, September.
- Phan Anh Duong & Borim Ryu & Chongmin Kim & Jinuk Lee & Hokeun Kang, 2022. "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels," Energies, MDPI, vol. 15(9), pages 1-22, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
- Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
- Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
- Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
- Lee, Chi-Hung & Chen, Szu-Hsien & Wang, Yen-Zen & Lin, Chao-Chien & Huang, Chih-Kai & Chuang, Ching-Nan & Wang, Chih-Kuang & Hsieh, Kuo-Huang, 2013. "Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks," Energy, Elsevier, vol. 55(C), pages 905-915.
- Ipsakis, Dimitris & Ouzounidou, Martha & Papadopoulou, Simira & Seferlis, Panos & Voutetakis, Spyros, 2017. "Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system," Applied Energy, Elsevier, vol. 208(C), pages 703-718.
- Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
- Zeng, Xingyan & Zhu, Lin & Huang, Yue & Lv, Liping & Zhang, Chaoli & Hao, Qiang & Fan, Junming, 2024. "Combined pinch and exergy analysis for post-combustion carbon capture NGCC integrated with absorption heat transformer and flash evaporator," Energy, Elsevier, vol. 288(C).
- Ribeirinha, P. & Alves, I. & Vázquez, F. Vidal & Schuller, G. & Boaventura, M. & Mendes, A., 2017. "Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 468-477.
- Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
- Chuenphan, Thapanat & Yurata, Tarabordin & Sema, Teerawat & Chalermsinsuwan, Benjapon, 2022. "Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution," Energy, Elsevier, vol. 254(PA).
- Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
- Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
- Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
- Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
- Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
- Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
- Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
More about this item
Keywords
steam methane reforming; steam methanol reforming; electrical efficiency; exergy efficiency; LNG;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:224-:d:304627. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.