Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113911
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
- Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
- Yousef, Ahmed M. & El-Maghlany, Wael M. & Eldrainy, Yehia A. & Attia, Abdelhamid, 2018. "New approach for biogas purification using cryogenic separation and distillation process for CO2 capture," Energy, Elsevier, vol. 156(C), pages 328-351.
- Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
- Wang, Xianfeng & Akhmedov, Novruz G. & Hopkinson, David & Hoffman, James & Duan, Yuhua & Egbebi, Adefemi & Resnik, Kevin & Li, Bingyun, 2016. "Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2," Applied Energy, Elsevier, vol. 161(C), pages 41-47.
- Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
- Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
- Barzagli, Francesco & Giorgi, Claudia & Mani, Fabrizio & Peruzzini, Maurizio, 2018. "Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy," Applied Energy, Elsevier, vol. 220(C), pages 208-219.
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
- Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
- Liu, Xuebing & Niu, Xiaowei & Zhan, Guoxiong & Xing, Lei & Huang, Zhoulan & Yuan, Bingling & Peng, Yue & Chen, Zhen & Li, Junhua, 2024. "Dynamic phase-splitting behaviour of biphasic solvent for carbon capture in a novel annular phase separator," Applied Energy, Elsevier, vol. 360(C).
- Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
- Yang, Hou-Yun & Wang, Yi-Xuan & He, Chuan-Shu & Qin, Yuan & Li, Wen-Qiang & Li, Wei-Hua & Mu, Yang, 2020. "Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide," Applied Energy, Elsevier, vol. 274(C).
- Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Bian, Bin & Shi, Le & Katuri, Krishna P. & Xu, Jiajie & Wang, Peng & Saikaly, Pascal E., 2020. "Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode," Applied Energy, Elsevier, vol. 278(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
- Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
- Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
- Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
- Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
- Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
- Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
- Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
- Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
- Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
- Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
- Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
- Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
- Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
More about this item
Keywords
CO2 capture; DMF; Amino acid; Aqueous-based; Phase change solvent; Energy reduction;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315983. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.