IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp113-128.html
   My bibliography  Save this article

Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption

Author

Listed:
  • Ferrara, G.
  • Lanzini, A.
  • Leone, P.
  • Ho, M.T.
  • Wiley, D.E.

Abstract

Carbon Capture and Storage (CCS) has been acknowledged as a technology for CO2 emission reduction. However, developments to lower cost and energy consumption remains an important challenge.

Suggested Citation

  • Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:113-128
    DOI: 10.1016/j.energy.2017.04.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730662X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    3. Geuzebroek, F.H. & Schneiders, L.H.J.M. & Kraaijveld, G.J.C. & Feron, P.H.M., 2004. "Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus," Energy, Elsevier, vol. 29(9), pages 1241-1248.
    4. Ehtiwesh, Ismael A.S. & Coelho, Margarida C. & Sousa, Antonio C.M., 2016. "Exergetic and environmental life cycle assessment analysis of concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 145-155.
    5. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    6. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    7. Giglio, Andrea & Lanzini, Andrea & Leone, Pierluigi & Rodríguez García, Margarita M. & Zarza Moya, Eduardo, 2017. "Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 453-473.
    8. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    9. Verda, Vittorio & Borchiellini, Romano, 2004. "Exergetic and economic evaluation of control strategies for a gas turbine plant," Energy, Elsevier, vol. 29(12), pages 2253-2271.
    10. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    11. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    12. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.
    13. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    14. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    15. de Bosio, Federico & Verda, Vittorio, 2015. "Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market," Applied Energy, Elsevier, vol. 152(C), pages 173-182.
    16. Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
    17. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    18. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    19. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    20. Verda, Vittorio & Baccino, Giorgia, 2012. "Thermoeconomic approach for the analysis of control system of energy plants," Energy, Elsevier, vol. 41(1), pages 38-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    2. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    3. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    4. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    5. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    6. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    7. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    8. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    9. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    10. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    11. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    12. Zaleta-Aguilar, Alejandro & Olivares-Arriaga, Abraham & Cano-Andrade, Sergio & Rodriguez-Alejandro, David A., 2016. "β-characterization by irreversibility analysis: A thermoeconomic diagnosis method," Energy, Elsevier, vol. 111(C), pages 850-858.
    13. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    14. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    15. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    16. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.
    17. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    18. Rašković, Predrag & Guzović, Zvonimir & Cvetković, Svetislav, 2013. "Performance analysis of electricity generation by the medium temperature geothermal resources: Velika Ciglena case study," Energy, Elsevier, vol. 54(C), pages 11-31.
    19. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    20. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:113-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.