IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5106-d422445.html
   My bibliography  Save this article

Energy Analysis and Exergy Optimization of Photovoltaic-Thermal Collector

Author

Listed:
  • Sonja Kallio

    (INSA Strasbourg ICUBE, University of Strasbourg, 67000 Strasbourg, France)

  • Monica Siroux

    (INSA Strasbourg ICUBE, University of Strasbourg, 67000 Strasbourg, France)

Abstract

A photovoltaic-thermal (PVT) collector is a solar-based micro-cogeneration system which generates simultaneously heat and power for buildings. The novelty of this paper is to conduct energy and exergy analysis on PVT collector performance under two different European climate conditions. The performance of the PVT collector is compared to a photovoltaic (PV) panel. Finally, the PVT design is optimized in terms of thermal and electrical exergy efficiencies. The optimized PVT designs are compared to the PV panel performance as well. The main focus is to find out if the PVT is still competitive with the PV panel electrical output, after maximizing its thermal exergy efficiency. The PVT collector is modelled into Matlab/Simulink to evaluate its performance under varying weather conditions. The PV panel is modelled with the CARNOT toolbox library. The optimization is conducted using Matlab gamultiobj-function based on the non-dominated sorting genetic algorithm-II (NSGA-II). The results indicated 7.7% higher annual energy production in Strasbourg. However, the exergy analysis revealed a better quality of thermal energy in Tampere with 72.9% higher thermal exergy production. The electrical output of the PVT is higher than from the PV during the summer months. The thermal exergy- driven PVT design is still competitive compared to the PV panel electrical output.

Suggested Citation

  • Sonja Kallio & Monica Siroux, 2020. "Energy Analysis and Exergy Optimization of Photovoltaic-Thermal Collector," Energies, MDPI, vol. 13(19), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5106-:d:422445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Conti & Eva Schito & Daniele Testi, 2019. "Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building," Energies, MDPI, vol. 12(8), pages 1-22, April.
    2. Sobhnamayan, F. & Sarhaddi, F. & Alavi, M.A. & Farahat, S. & Yazdanpanahi, J., 2014. "Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept," Renewable Energy, Elsevier, vol. 68(C), pages 356-365.
    3. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    4. Joo Hee Lee & Seong Geon Hwang & Gwi Hyun Lee, 2019. "Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids," Energies, MDPI, vol. 12(16), pages 1-16, August.
    5. Michel Feidt & Monica Costea, 2012. "Energy and Exergy Analysis and Optimization of Combined Heat and Power Systems. Comparison of Various Systems," Energies, MDPI, vol. 5(9), pages 1-22, September.
    6. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    7. Madalina Barbu & George Darie & Monica Siroux, 2019. "Analysis of a Residential Photovoltaic-Thermal (PVT) System in Two Similar Climate Conditions," Energies, MDPI, vol. 12(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monjur Mourshed & Nahid Imtiaz Masuk & Huy Quoc Nguyen & Bahman Shabani, 2022. "An Experimental Approach to Energy and Exergy Analyses of a Hybrid PV/T System with Simultaneous Water and Air Cooling," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Madalina Barbu & George Darie & Monica Siroux, 2020. "A Parametric Study of a Hybrid Photovoltaic Thermal (PVT) System Coupled with a Domestic Hot Water (DHW) Storage Tank," Energies, MDPI, vol. 13(24), pages 1-18, December.
    3. Kun-Jung Kim & Kee-Ho Yu, 2020. "Multidisciplinary Design Optimization for a Solar-Powered Exploration Rover Considering the Restricted Power Requirement," Energies, MDPI, vol. 13(24), pages 1-28, December.
    4. Wael Zeitoun & Jian Lin & Monica Siroux, 2023. "Energetic and Exergetic Analyses of an Experimental Earth–Air Heat Exchanger in the Northeast of France," Energies, MDPI, vol. 16(3), pages 1-15, February.
    5. Sonja Kallio & Monica Siroux, 2023. "Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings," Energies, MDPI, vol. 16(3), pages 1-22, January.
    6. Kallio, Sonja & Siroux, Monica, 2022. "Exergy and exergo-economic analysis of a hybrid renewable energy system under different climate conditions," Renewable Energy, Elsevier, vol. 194(C), pages 396-414.
    7. Yunho Kim & Jungha Hwang & Sangmu Bae & Yujin Nam, 2022. "Performance Comparison and Analysis of the Curtain-Wall-Type Liquid-Type Photovoltaic Thermal Unit According to the Pipe Connection Method," Energies, MDPI, vol. 15(7), pages 1-15, March.
    8. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    2. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    3. Ahmed Mohamed Soliman, 2023. "A Numerical Investigation of PVT System Performance with Various Cooling Configurations," Energies, MDPI, vol. 16(7), pages 1-25, March.
    4. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    5. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    6. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib," Energies, MDPI, vol. 13(9), pages 1-13, May.
    7. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    8. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    9. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    10. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    11. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    12. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    13. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    14. Baljit, S.S.S. & Chan, H.-Y. & Audwinto, V.A. & Hamid, S.A. & Fudholi, Ahmad & Zaidi, S.H. & Othman, M.Y. & Sopian, K., 2017. "Mathematical modelling of a dual-fluid concentrating photovoltaic-thermal (PV-T) solar collector," Renewable Energy, Elsevier, vol. 114(PB), pages 1258-1271.
    15. Saeedi, F. & Sarhaddi, F. & Behzadmehr, A., 2015. "Optimization of a PV/T (photovoltaic/thermal) active solar still," Energy, Elsevier, vol. 87(C), pages 142-152.
    16. Henrik Zsiborács & Gábor Pintér & Attila Bai & József Popp & Zoltán Gabnai & Béla Pályi & István Farkas & Nóra Hegedűsné Baranyai & Christian Gützer & Heidelinde Trimmel & Sandro Oswald & Philipp Weih, 2018. "Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study," Energies, MDPI, vol. 11(5), pages 1-18, May.
    17. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    18. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    19. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    20. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5106-:d:422445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.