IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p242-d304860.html
   My bibliography  Save this article

Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China

Author

Listed:
  • Shunyong Yin

    (Building Energy Research Center, Tsinghua University, Haidian District, Beijing 100084, China)

  • Jianjun Xia

    (Building Energy Research Center, Tsinghua University, Haidian District, Beijing 100084, China)

  • Yi Jiang

    (Building Energy Research Center, Tsinghua University, Haidian District, Beijing 100084, China)

Abstract

Combined heat and power (CHP), an efficient heating method with cascades use of energy, accounts for approximately 50% of the heat sources in northern China. Many researchers have made significant efforts to improve its energy efficiency and environmental effects with important achievements. Given that the system produces heat and electricity at the same time, this study focuses on the role of CHP in the holistic urban energy system and points out the mismatch between the demand and supply sides of urban energy systems by using the heat-to-power ratio as a parameter. The calculation method and characteristics of the supply side heat-to-power ratio of eight heating methods and the maximum demand side heat-to-power ratio for 19 cities in northern China are displayed. After the analysis, it is concluded that (1) the maximum demand side heat-to-power ratio in the cities varies from 1.0 to 5.9, which is affected by the location and social, economic, and industrial structures. (2) In most of the cities, with the current energy structure, the demand side heat-to-power ratios are always larger than the supply side heat-to-power ratios. (3) The reduction in heating demand, surplus heat recovery, and the use of a highly efficient electric heating method, such as the heat pump, can help solve the mismatch of the heat-to-power ratio between the demand and supply sides. These conclusions can guide the urban energy planning and system construction.

Suggested Citation

  • Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:242-:d:304860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brown, Kevin & Minett, Simon, 1996. "History of CHP developments and current trends," Applied Energy, Elsevier, vol. 53(1-2), pages 11-22.
    2. Li, Yan & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2011. "A new type of district heating system based on distributed absorption heat pumps," Energy, Elsevier, vol. 36(7), pages 4570-4576.
    3. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    4. Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
    5. Michel Feidt & Monica Costea, 2012. "Energy and Exergy Analysis and Optimization of Combined Heat and Power Systems. Comparison of Various Systems," Energies, MDPI, vol. 5(9), pages 1-22, September.
    6. Akira Yoshida & Yoshiharu Amano & Noboru Murata & Koichi Ito & Takumi Hasizume, 2013. "A Comparison of Optimal Operation of a Residential Fuel Cell Co-Generation System Using Clustered Demand Patterns Based on Kullback-Leibler Divergence," Energies, MDPI, vol. 6(1), pages 1-26, January.
    7. Cho, Woojin & Kim, Janghyun & Lee, Kwan-Soo, 2012. "Combined heat and power unit capacity for high-heat to power ratio buildings without selling excess electricity to the grid," Energy, Elsevier, vol. 38(1), pages 354-361.
    8. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.
    9. Salomón, Marianne & Savola, Tuula & Martin, Andrew & Fogelholm, Carl-Johan & Fransson, Torsten, 2011. "Small-scale biomass CHP plants in Sweden and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4451-4465.
    10. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    11. Liao, Chunhui & Ertesvåg, Ivar S. & Zhao, Jianing, 2013. "Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China," Energy, Elsevier, vol. 57(C), pages 671-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    3. Ma, Meiyan & Tang, Xu & Shi, Changning & Wang, Min & Li, Xinying & Luo, Pengfei & Zhang, Baosheng, 2023. "Roadmap towards clean and low-carbon heating to 2060: The case of northern urban region in China," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    2. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    3. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    4. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.
    5. Dong, Hye-Won & Lee, Sung-Joon & Yoon, Dong-Seob & Park, Joon-Young & Jeong, Jae-Weon, 2017. "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system," Energy, Elsevier, vol. 123(C), pages 432-444.
    6. Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
    7. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    8. Heng Chen & Jidong Xu & Yao Xiao & Zhen Qi & Gang Xu & Yongping Yang, 2018. "An Improved Heating System with Waste Pressure Utilization in a Combined Heat and Power Unit," Energies, MDPI, vol. 11(6), pages 1-20, June.
    9. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    10. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.
    11. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    12. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    13. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    14. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    15. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    16. Liu, Lanbin, 2015. "Major issues and solutions in the management system of space heating system in North China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 221-231.
    17. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    18. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    19. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    20. Xiangyu Kong & Jingtao Yao & Zhijun E & Xin Wang, 2019. "Generation Expansion Planning Based on Dynamic Bayesian Network Considering the Uncertainty of Renewable Energy Resources," Energies, MDPI, vol. 12(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:242-:d:304860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.