IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2884-d367559.html
   My bibliography  Save this article

Bubble Electret-Elastomer Piezoelectric Transducer

Author

Listed:
  • Ryszard Kacprzyk

    (Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, 50-377 Wroclaw, Poland)

  • Agnieszka Mirkowska

    (Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, 50-377 Wroclaw, Poland)

Abstract

Ferroelectret-based piezoelectric transducers are, nowadays, commonly used in energy harvesting applications due to their high piezoelectric activity. Unfortunately, the processing properties of such materials are limited, and new solutions are sought. This paper presents a new solution of a piezoelectric transducer containing electret bubbles immersed in an elastomer matrix. Application of a gas-filled dielectric bubble as the fundamental cell of the piezo-active structure is discussed. A simplified model of the structure, containing electret thin-wall bubbles and elastomer dielectric filling, was applied to determine the value of the piezoelectric coefficient, d 33 . An exemplary structure containing piezo-active bubbles, made of an electret material, immersed in an elastomer filling is presented. The influence of the mechanical and electrical properties of particular components on the structure piezoelectric properties are experimentally examined and confirmed. The quasi-static method was used to measure the piezoelectric coefficient, d 33 . The separation of requirements related to the mechanical and electrical properties of the transducer is discussed.

Suggested Citation

  • Ryszard Kacprzyk & Agnieszka Mirkowska, 2020. "Bubble Electret-Elastomer Piezoelectric Transducer," Energies, MDPI, vol. 13(11), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2884-:d:367559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chongsei Yoon & Buil Jeon & Giwan Yoon, 2019. "A Feasibility Study of Fabrication of Piezoelectric Energy Harvesters on Commercially Available Aluminum Foil," Energies, MDPI, vol. 12(14), pages 1-12, July.
    2. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poblete, A. & Ruiz, R.O. & Jia, G., 2024. "Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations," Energy, Elsevier, vol. 301(C).
    2. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    3. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    4. Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
    5. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    6. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    8. Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).
    9. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    10. Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
    11. Hassan Elahi & Khushboo Munir & Marco Eugeni & Sofiane Atek & Paolo Gaudenzi, 2020. "Energy Harvesting towards Self-Powered IoT Devices," Energies, MDPI, vol. 13(21), pages 1-31, October.
    12. Haider Jaafar Chilabi & Hanim Salleh & Eris E. Supeni & Azizan As’arry & Khairil Anas Md Rezali & Ahmed B. Atrah, 2020. "Harvesting Energy from Planetary Gear Using Piezoelectric Material," Energies, MDPI, vol. 13(1), pages 1-25, January.
    13. Jianfeng Hong & Fu Chen & Ming He & Sheng Wang & Wenxiang Chen & Mingjie Guan, 2019. "Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology," Energies, MDPI, vol. 12(16), pages 1-13, August.
    14. Damien Hoareau & Gurvan Jodin & Abdo-rahmane Anas Laaraibi & Jacques Prioux & Florence Razan, 2023. "Available Kinetic Energy Sources on the Human Body during Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered Piezoelectric Harvesters," Energies, MDPI, vol. 16(6), pages 1-20, March.
    15. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    16. Manuel Serrano & Kevin Larkin & Sergei Tretiak & Abdessattar Abdelkefi, 2023. "Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness," Energies, MDPI, vol. 16(4), pages 1-21, February.
    17. Luigi Costanzo & Massimo Vitelli, 2020. "Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters," Energies, MDPI, vol. 13(3), pages 1-34, January.
    18. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Giacomo Clementi & Francesco Cottone & Alessandro Di Michele & Luca Gammaitoni & Maurizio Mattarelli & Gabriele Perna & Miquel López-Suárez & Salvatore Baglio & Carlo Trigona & Igor Neri, 2022. "Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-44, August.
    20. Hai Dang Le & Soon-Duck Kwon, 2021. "Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays," Energies, MDPI, vol. 14(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2884-:d:367559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.