IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2417-d542184.html
   My bibliography  Save this article

Problems of Powering End Devices in Wireless Networks of the Internet of Things

Author

Listed:
  • Andrzej Michalski

    (Electrical Engineering Department, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Zbigniew Watral

    (Faculty of Electronics, Military University of Technology, 00-908 Warszawa, Poland)

Abstract

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.

Suggested Citation

  • Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2417-:d:542184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    2. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    3. Hassan Elahi & Khushboo Munir & Marco Eugeni & Sofiane Atek & Paolo Gaudenzi, 2020. "Energy Harvesting towards Self-Powered IoT Devices," Energies, MDPI, vol. 13(21), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mansour & Amal Gamal & Ahmed I. Ahmed & Lobna A. Said & Abdelmoniem Elbaz & Norbert Herencsar & Ahmed Soltan, 2023. "Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-39, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    2. Hassan Elahi & Khushboo Munir & Marco Eugeni & Sofiane Atek & Paolo Gaudenzi, 2020. "Energy Harvesting towards Self-Powered IoT Devices," Energies, MDPI, vol. 13(21), pages 1-31, October.
    3. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    5. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    6. Jose-Maria Delgado-Sanchez & Isidoro Lillo-Bravo, 2020. "Influence of Degradation Processes in Lead–Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems," Energies, MDPI, vol. 13(16), pages 1-28, August.
    7. Poblete, A. & Ruiz, R.O. & Jia, G., 2024. "Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations," Energy, Elsevier, vol. 301(C).
    8. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    10. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    11. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    12. Eroğlu, Fatih & Kurtoğlu, Mehmet & Eren, Ahmet & Vural, Ahmet Mete, 2023. "Multi-objective control strategy for multilevel converter based battery D-STATCOM with power quality improvement," Applied Energy, Elsevier, vol. 341(C).
    13. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    14. Milen Balbis Morejon & Juan Jose Cabello Eras & Alexis Sagastume Gutierrez & Vladimir Sousa Santos & Yabiel Perez Gomez & Juan Gabriel Rueda Bayona, 2019. "Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 103-112.
    15. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    16. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Maciej Grunt & Andrzej Błażejewski & Sebastian Pecolt & Tomasz Królikowski, 2022. "BelBuk System—Smart Logistics for Sustainable City Development in Terms of the Deficit of a Chemical Fertilizers," Energies, MDPI, vol. 15(13), pages 1-16, June.
    18. Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
    19. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    20. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2417-:d:542184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.