Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131648
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
- Wang, Tian & Zhang, Qichang & Han, Jianxin & Wang, Wei & Yan, Yucheng & Cao, Xinyu & Hao, Shuying, 2023. "Bio-inspired quad-stable piezoelectric energy harvester for low-frequency vibration scavenging," Energy, Elsevier, vol. 282(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
- Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
- Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
- Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
- Hossain Ahmed & Riaz Ahmed, 2023. "A Mass-In-Mass Metamaterial Design for Harvesting Energy at a Broadband Frequency Range," Energies, MDPI, vol. 16(16), pages 1-13, August.
- Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
- Yulong Wang & Yaran Lv & Baozhan Lv & Ying Zhang, 2022. "Modeling, Simulation and Analysis of Intermediate Fixed Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(9), pages 1-13, April.
- Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
- Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
- Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).
- Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
- Wang, Guotai & Song, Rujun & Luo, Lianjian & Yu, Pengbo & Yang, Xiaohui & Zhang, Leian, 2024. "Multi-piezoelectric energy harvesters array based on wind-induced vibration: Design, simulation, and experimental evaluation," Energy, Elsevier, vol. 300(C).
- Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
- Pu, Hua-Yan & Liu, Jun & Wang, Min & Ding, Ji-Heng & Peng, Yan & Luo, Jun & Sun, Yi, 2024. "Ultra-low frequency and small-amplitude electromagnetic vibration energy harvester considering rotary multi-magnetic-electrical-mechanical coupling," Applied Energy, Elsevier, vol. 375(C).
- Damien Hoareau & Gurvan Jodin & Abdo-rahmane Anas Laaraibi & Jacques Prioux & Florence Razan, 2023. "Available Kinetic Energy Sources on the Human Body during Sports Activities: A Numerical Approach Based on Accelerometers for Cantilevered Piezoelectric Harvesters," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Ryszard Kacprzyk & Agnieszka Mirkowska, 2020. "Bubble Electret-Elastomer Piezoelectric Transducer," Energies, MDPI, vol. 13(11), pages 1-11, June.
- Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Shi, Weijie & Chen, Chen & Yang, Chuanhui & Xian, Tongrui & Luo, Xiaohui & Zhao, Haixia, 2023. "Experimental and simulation study of a hydraulic piezoelectric energy harvester under different connection modes," Energy, Elsevier, vol. 281(C).
- Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- He, Lipeng & Han, Yuhang & Liu, Renwen & Hu, Renhui & Yu, Gang & Cheng, Guangming, 2022. "Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure," Energy, Elsevier, vol. 256(C).
More about this item
Keywords
Piezoelectric energy harvester; Bayesian inference; Model parameter updating; Model class selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s036054422401421x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.