IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics036054422401421x.html
   My bibliography  Save this article

Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations

Author

Listed:
  • Poblete, A.
  • Ruiz, R.O.
  • Jia, G.

Abstract

The demand for efficient energy harvesting from vibratory environments has notably increased with the proliferation of piezoelectric devices. However, mismatches between model predictions and experimental observations underpin a critical challenge: accurately modeling piezoelectric energy harvesters (PEHs) while accounting for the inherent uncertainties in their electromechanical properties. A comprehensive Bayesian inference framework is posited for identifying electromechanical properties and facilitating model class selection of nonlinear PEHs. This approach addresses uncertainties by integrating prior knowledge and experimental data to update model parameters, offering the potential to balance model complexity and predictive precision systematically. The influence of different excitation amplitudes and the number of observations employed in the framework is studied. The results demonstrated the ability to capture both linear and nonlinear behaviors, while the model class selection effectively determined the simplest constitutive models sufficient for accurate predictions, validated against varying excitation intensities. By elucidating the trade-off between model simplicity and accuracy, this method not only refines the understanding of PEH behavior under diverse operating conditions but also equips designers with a robust predictive tool. Consequently, this methodology serves to optimize the deployment of PEHs in real-world applications, such as structural health monitoring, ensuring reliable energy supply with quantifiable confidence levels.

Suggested Citation

  • Poblete, A. & Ruiz, R.O. & Jia, G., 2024. "Bayesian model class selection of nonlinear constitutive relationships for piezoelectric energy harvesters with small set of observations," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s036054422401421x
    DOI: 10.1016/j.energy.2024.131648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401421X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    2. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    3. Wang, Tian & Zhang, Qichang & Han, Jianxin & Wang, Wei & Yan, Yucheng & Cao, Xinyu & Hao, Shuying, 2023. "Bio-inspired quad-stable piezoelectric energy harvester for low-frequency vibration scavenging," Energy, Elsevier, vol. 282(C).
    4. Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
    5. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    6. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
    2. Shen, Jiwei & Wan, Shui & Fu, Jundong & Li, Shuli & Lv, Debao & Dekemele, Kevin, 2024. "A magnetic plucking frequency up-conversion piezoelectric energy harvester with nonlinear energy sink structure," Applied Energy, Elsevier, vol. 376(PB).
    3. Min, Zhaowei & Chen, Yifeng & Shan, Xiaobiao & Xie, Tao, 2024. "A novel double-arch piezoelectric energy harvester for capturing railway track vibration energy," Energy, Elsevier, vol. 312(C).
    4. Li, Lin & Lu, Bin & Xu, Weixin & Wang, Chengyan & Wu, Jiafeng & Tan, Dapeng, 2024. "Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion," Energy, Elsevier, vol. 308(C).
    5. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    6. Zhang, Li & Kan, Junwu & Lin, Shijie & Liao, Weilin & Yang, Jianwen & Liu, Panpan & Wang, Shuyun & Zhang, Zhonghua, 2024. "Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate," Renewable Energy, Elsevier, vol. 222(C).
    7. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    8. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
    9. Hossain Ahmed & Riaz Ahmed, 2023. "A Mass-In-Mass Metamaterial Design for Harvesting Energy at a Broadband Frequency Range," Energies, MDPI, vol. 16(16), pages 1-13, August.
    10. Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
    11. Li, Lin & Gu, Zeheng & Xu, Weixin & Tan, Yunfeng & Fan, Xinghua & Tan, Dapeng, 2023. "Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling," Energy, Elsevier, vol. 272(C).
    12. Nikolay Todorov Atanasov & Gabriela Lachezarova Atanasova & Daniel Adrian Gârdan & Iuliana Petronela Gârdan, 2023. "Experimental Assessment of Electromagnetic Fields Inside a Vehicle for Different Wireless Communication Scenarios: A New Alternative Source of Energy," Energies, MDPI, vol. 16(15), pages 1-22, July.
    13. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    14. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    15. Yulong Wang & Yaran Lv & Baozhan Lv & Ying Zhang, 2022. "Modeling, Simulation and Analysis of Intermediate Fixed Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(9), pages 1-13, April.
    16. Kan, Junwu & Zhang, Li & Wang, Shuyun & Lin, Shijie & Yang, Zemeng & Meng, Fanxu & Zhang, Zhonghua, 2023. "Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls," Energy, Elsevier, vol. 285(C).
    17. Liu, Shibo & Zhang, Lijun & Lu, Jiahui & Zhang, Xu & Wang, Kaifei & Gan, Zhenwei & Liu, Xiao & Jing, Zhengjun & Cui, Xudong & Wang, Hang, 2025. "Advances in urban wind resource development and wind energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    19. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    20. Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s036054422401421x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.