IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2770-d249775.html
   My bibliography  Save this article

Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations

Author

Listed:
  • Iman Izadgoshasb

    (School of Environment, Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Yee Yan Lim

    (School of Environment, Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Ricardo Vasquez Padilla

    (School of Environment, Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Mohammadreza Sedighi

    (School of Environment, Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Jeremy Paul Novak

    (School of Environment, Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

Abstract

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.

Suggested Citation

  • Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2770-:d:249775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
    2. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    3. Bunn, Derek W. & Redondo-Martin, Jorge & Muñoz-Hernandez, José I. & Diaz-Cachinero, Pablo, 2019. "Analysis of coal conversion to biomass as a transitional technology," Renewable Energy, Elsevier, vol. 132(C), pages 752-760.
    4. Arkadiusz Syta & Grzegorz Litak & Michael I. Friswell & Sondipon Adhikari, 2016. "Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(4), pages 1-7, April.
    5. Jayne Lois G. San Juan & Kathleen B. Aviso & Raymond R. Tan & Charlle L. Sy, 2019. "A Multi-Objective Optimization Model for the Design of Biomass Co-Firing Networks Integrating Feedstock Quality Considerations," Energies, MDPI, vol. 12(12), pages 1-24, June.
    6. Zappalá, D. & Sarma, N. & Djurović, S. & Crabtree, C.J. & Mohammad, A. & Tavner, P.J., 2019. "Electrical & mechanical diagnostic indicators of wind turbine induction generator rotor faults," Renewable Energy, Elsevier, vol. 131(C), pages 14-24.
    7. Liu, Hongwei & Maghoul, Pooneh & Bahari, Ako & Kavgic, Miroslava, 2019. "Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada," Renewable Energy, Elsevier, vol. 136(C), pages 1266-1280.
    8. Kan, Junwu & Fan, Chuntao & Wang, Shuyun & Zhang, Zhonghua & Wen, Jianming & Huang, Leshuai, 2016. "Study on a piezo-windmill for energy harvesting," Renewable Energy, Elsevier, vol. 97(C), pages 210-217.
    9. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2019. "Improving CFD wind farm simulations incorporating wind direction uncertainty," Renewable Energy, Elsevier, vol. 133(C), pages 1011-1023.
    10. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    2. Jamshid Farzidayeri & Vishwas Bedekar, 2022. "Design of a V-Twin with Crank-Slider Mechanism Wind Energy Harvester Using Faraday’s Law of Electromagnetic Induction for Powering Small Scale Electronic Devices," Energies, MDPI, vol. 15(17), pages 1-19, August.
    3. David Omooria Masara & Hassan El Gamal & Ossama Mokhiamar, 2021. "Split Cantilever Multi-Resonant Piezoelectric Energy Harvester for Low-Frequency Application," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
    2. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    3. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    4. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    5. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    6. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    7. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    8. Antonini, Enrico G.A. & Caldeira, Ken, 2021. "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms," Applied Energy, Elsevier, vol. 281(C).
    9. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    11. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    12. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    13. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    15. Zheng, Peng & Qi, Lingfei & Sun, Mengdie & Luo, Dabing & Zhang, Zutao, 2021. "A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels," Energy, Elsevier, vol. 227(C).
    16. Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
    17. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    18. Tingting Zhang & Yanfei Jin, 2024. "Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-13, January.
    19. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    20. Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2770-:d:249775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.