IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019101.html
   My bibliography  Save this article

Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities

Author

Listed:
  • Bouma, A.
  • Le, E.
  • Vasconcellos, R.
  • Abdelkefi, A.

Abstract

A comprehensive study on the design and nonlinear characterization of a two-degree of freedom piezoaeroelastic energy harvesting system with freeplay and multi-segmented nonlinearities in the pitch degree of freedom is explored and discussed. The nonlinear governing equations of the considered piezoaeroelastic energy harvesting system are derived and the unsteady representation based on the Duhamel formulation is employed to represent the aerodynamic loads. Nonlinear piezoaeroelastic response analysis is carried out in the presence of freeplay and multi-segmented nonlinearities before and after the linear onset of flutter. Such nonlinearities can be introduced to piezoaeroelastic energy harvesters for performance enhancement through the possible existence of subcritical Hopf bifurcation and aperiodic responses due to the grazing and grazing/sliding bifurcations. It is shown that the existence of discontinuous effects result in the possibility of harvesting energy at lower speeds than the linear onset speed of instability due to the activation of the subcritical Hopf bifurcation. Additionally, the increase of the strength of the multi-segmented nonlinearities leads to the existence of aperiodic responses with the presence of several bifurcations limiting the system's dynamics at low pitch angles with limiting stall issues. It is proved that an effective design with harvesting energy at low wind speeds can be carried out for wing-based energy harvesters by carefully selecting the linear stiffness of the pitch degree of freedom, gap and type of the multi-segmented discontinuity, and electrical load resistance.

Suggested Citation

  • Bouma, A. & Le, E. & Vasconcellos, R. & Abdelkefi, A., 2022. "Effective design and characterization of flutter-based piezoelectric energy harvesters with discontinuous nonlinearities," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019101
    DOI: 10.1016/j.energy.2021.121662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    2. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood Al-Riyami & Issam Bahadur & Hassen Ouakad, 2022. "There Is Plenty of Room inside a Bluff Body: A Hybrid Piezoelectric and Electromagnetic Wind Energy Harvester," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).
    4. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    5. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    6. Bin Bao & Quan Wang & Yufei Wu & Pengda Li, 2021. "Experimental Study on Hydroelectric Energy Harvester Based on a Hybrid Qiqi and Turbine Structure," Energies, MDPI, vol. 14(22), pages 1-15, November.
    7. Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
    8. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    9. Liao, Weilin & Huang, Zijian & Sun, Hu & Huang, Xin & Gu, Yiqun & Chen, Wentao & Zhang, Zhonghua & Kan, Junwu, 2023. "Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting," Energy, Elsevier, vol. 281(C).
    10. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    11. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Yurchenko, Daniil & Wolszczak, Piotr & Dymarek, Andrzej & Dzitkowski, Tomasz, 2023. "Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    13. Hasan Hamdan & Sharul Sham Dol & Abdelrahman Hosny Gomaa & Aghyad Belal Al Tahhan & Ahmad Al Ramahi & Haya Fares Turkmani & Mohammad Alkhedher & Rahaf Ajaj, 2023. "Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits," Energies, MDPI, vol. 17(1), pages 1-30, December.
    14. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    15. Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
    16. Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
    17. Kan, Junwu & Wang, Jin & Wu, Yaqi & Chen, Song & Wang, Shuyun & Jiang, Yonghua & Zhang, Zhonghua, 2022. "Energy harvesting from wind by an axially retractable bracket-shaped piezoelectric vibrator excited by magnetic force," Energy, Elsevier, vol. 240(C).
    18. Le Scornec, Julien & Guiffard, Benoit & Seveno, Raynald & Le Cam, Vincent & Ginestar, Stephane, 2022. "Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 184(C), pages 551-563.
    19. David Ruiz Bargueño & Valerio Antonio Pamplona Salomon & Fernando Augusto Silva Marins & Pedro Palominos & Luis Armando Marrone, 2021. "State of the Art Review on the Analytic Hierarchy Process and Urban Mobility," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
    20. Zhang, Mingjie & Abdelkefi, Abdessattar & Yu, Haiyan & Ying, Xuyong & Gaidai, Oleg & Wang, Junlei, 2021. "Predefined angle of attack and corner shape effects on the effectiveness of square-shaped galloping energy harvesters," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.