IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1826-1838.html
   My bibliography  Save this article

Energy harvesting from fluid flow using piezoelectrics: A critical review

Author

Listed:
  • Hamlehdar, Maryam
  • Kasaeian, Alibakhsh
  • Safaei, Mohammad Reza

Abstract

The ambient energy as an available and harvestable energy source which has a high potential to generate electricity for powering electronics devices. Piezoelectric materials, as one of the well-known energy harvesting mechanisms, play a significant role in converting ambient energy into electrical energy, particularly in small electronic devices such as measuring devices in remote or hostile environments where batteries are not an acceptable option. For this reason, piezoelectric energy harvester (PEH) can help to optimize the weight of structures. In addition, PEH can produce an output voltage in response to the inputs such as thermal, electrical, mechanical and electromagnetic energies. This paper provides a holistic review of the energy harvesting techniques from fluid flow using piezoelectric materials. To this end, the recently conducted research studies in the context of energy harvesting based on the fluid flow motion have been reviewed, considering various modeling and methods for improving the PEH efficiency. Various types of energy harvesting mechanisms, based on vibration by using piezoelectric, have been investigated to identify their opportunities and challenges.

Suggested Citation

  • Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1826-1838
    DOI: 10.1016/j.renene.2019.05.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Saiwei & Sun, Zhiqiang, 2015. "Harvesting vortex energy in the cylinder wake with a pivoting vane," Energy, Elsevier, vol. 88(C), pages 783-792.
    2. Dellinger, Nicolas & François, Pierre & Lefebure, David & Mose, Robert & Garambois, Pierre-Andre, 2018. "An experiment of a hydropower conversion system based on vortex-induced vibrations in a confined channel," Renewable Energy, Elsevier, vol. 115(C), pages 54-63.
    3. Selvan, Krishna Veni & Mohamed Ali, Mohamed Sultan, 2016. "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1035-1047.
    4. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    5. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    6. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    7. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    8. Albert, Alberto & Berselli, Giovanni & Bruzzone, Luca & Fanghella, Pietro, 2017. "Mechanical design and simulation of an onshore four-bar wave energy converter," Renewable Energy, Elsevier, vol. 114(PB), pages 766-774.
    9. Eric Cross, 2004. "Lead-free at last," Nature, Nature, vol. 432(7013), pages 24-25, November.
    10. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    11. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    12. Olivieri, Stefano & Boccalero, Gregorio & Mazzino, Andrea & Boragno, Corrado, 2017. "Fluttering conditions of an energy harvester for autonomous powering," Renewable Energy, Elsevier, vol. 105(C), pages 530-538.
    13. Yılmaz, Sebnem & Selim, Hasan, 2013. "A review on the methods for biomass to energy conversion systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 420-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
    2. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    3. Du, Xiaozhen & Zhang, Mi & Chang, Heng & Wang, Yu & Yu, Hong, 2022. "Micro windmill piezoelectric energy harvester based on vortex-induced vibration in tunnel," Energy, Elsevier, vol. 238(PA).
    4. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    5. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    6. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    7. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    8. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    9. Abdul Haseeb & Mahesh Edla & Mustafa Ucgul & Fendy Santoso & Mikio Deguchi, 2023. "A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    10. Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
    11. Hasheminejad, Seyyed M. & Masoumi, Yasin, 2023. "Dual-functional synergetic energy harvesting and flow-induced vibration control of an electromagnetic-based square cylinder integrated with a flexible bimorph piezoelectric wake splitter plate," Renewable Energy, Elsevier, vol. 216(C).
    12. Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
    13. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    14. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    15. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    16. Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
    17. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    18. Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
    19. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    20. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
    21. Bjarnhedinn Gudlaugsson & Bethany Marguerite Bronkema & Ivana Stepanovic & David Christian Finger, 2024. "A Systematic Review of Techno-Economic, Environmental and Socioeconomic Assessments for Vibration Induced Energy Harvesting," Energies, MDPI, vol. 17(22), pages 1-42, November.
    22. Zhao, Fuwang & Wang, Zhaokun & Bai, Honglei & Tang, Hui, 2023. "Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper," Energy, Elsevier, vol. 282(C).
    23. Tomasz Haniszewski & Maria Cieśla, 2022. "Energy Harvesting in the Crane-Hoisting Mechanism," Energies, MDPI, vol. 15(24), pages 1-22, December.
    24. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    25. Kazemi, Shahriar & Nili-Ahmadabadi, Mahdi & Tavakoli, Mohammad Reza & Tikani, Reza, 2021. "Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester," Renewable Energy, Elsevier, vol. 179(C), pages 528-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    2. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    3. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    4. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    5. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    6. Christina Hamdan & John Allport & Azadeh Sajedin, 2021. "Piezoelectric Power Generation from the Vortex-Induced Vibrations of a Semi-Cylinder Exposed to Water Flow," Energies, MDPI, vol. 14(21), pages 1-25, October.
    7. Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
    8. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    10. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    11. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    12. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
    14. Shan, Xiaobiao & Li, Hongliang & Yang, Yuancai & Feng, Ju & Wang, Yicong & Xie, Tao, 2019. "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration," Energy, Elsevier, vol. 172(C), pages 134-140.
    15. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    16. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    17. Chaiyan Jettanasen & Panapong Songsukthawan & Atthapol Ngaopitakkul, 2020. "Development of Micro-Mobility Based on Piezoelectric Energy Harvesting for Smart City Applications," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    18. Park, Hongrae & Mentzelopoulos, Andreas P. & Bernitsas, Michael M., 2023. "Hydrokinetic energy harvesting from slow currents using flow-induced oscillations," Renewable Energy, Elsevier, vol. 214(C), pages 242-254.
    19. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    20. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1826-1838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.