IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2138-d351867.html
   My bibliography  Save this article

Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH

Author

Listed:
  • Jinhyeong Park

    (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Munsu Lee

    (Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea)

  • Gunwoo Kim

    (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Seongyun Park

    (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Jonghoon Kim

    (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

Abstract

To enhance the efficiency of an energy storage system, it is important to predict and estimate the battery state, including the state of charge (SOC) and state of health (SOH). In general, the statistical approaches for predicting the battery state depend on historical data measured via experiments. The statistical methods based on experimental data may not be suitable for practical applications. After reviewing the various methodologies for predicting the battery capacity without measured data, it is found that a joint estimator that estimates the SOC and SOH is needed to compensate for the data shortage. Therefore, this study proposes an integrated model in which the dual extended Kalman filter (DEKF) and autoregressive (AR) model are combined for predicting the SOH via a statistical model in cases where the amount of measured data is insufficient. The DEKF is advantageous for estimating the battery state in real-time and the AR model performs better for predicting the battery state using previous data. Because the DEKF has limited performance for capacity estimation, the multivariate AR model is employed and a health indicator is used to enhance the performance of the prediction model. The results of the multivariate AR model are significantly better than those obtained using a single variable. The mean absolute percentage errors are 1.45% and 0.5183%, respectively.

Suggested Citation

  • Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2138-:d:351867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Haihong & Lü, Zhiqiang & Wang, Huimin & Wei, Haiyan & Chen, Lin, 2018. "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy, Elsevier, vol. 160(C), pages 466-477.
    2. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    4. Paul W. Gruber & Pablo A. Medina & Gregory A. Keoleian & Stephen E. Kesler & Mark P. Everson & Timothy J. Wallington, 2011. "Global Lithium Availability," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 760-775, October.
    5. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    6. Yang, Fangfang & Wang, Dong & Zhao, Yang & Tsui, Kwok-Leung & Bae, Suk Joo, 2018. "A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries," Energy, Elsevier, vol. 145(C), pages 486-495.
    7. Kang, Byung O. & Lee, Munsu & Kim, Youngil & Jung, Jaesung, 2018. "Economic analysis of a customer-installed energy storage system for both self-saving operation and demand response program participation in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 69-83.
    8. Zheng, Yuejiu & Wang, Jingjing & Qin, Chao & Lu, Languang & Han, Xuebing & Ouyang, Minggao, 2019. "A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 185(C), pages 361-371.
    9. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
    2. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    3. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    4. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.
    5. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Alireza Rastegarpanah & Jamie Hathaway & Rustam Stolkin, 2021. "Rapid Model-Free State of Health Estimation for End-of-First-Life Electric Vehicle Batteries Using Impedance Spectroscopy," Energies, MDPI, vol. 14(9), pages 1-16, May.
    7. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    8. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
    9. Zhengyi Bao & Jiahao Jiang & Chunxiang Zhu & Mingyu Gao, 2022. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 15(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    4. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).
    5. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    6. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    7. Chen, Jianguo & Han, Xuebing & Sun, Tao & Zheng, Yuejiu, 2024. "Analysis and prediction of battery aging modes based on transfer learning," Applied Energy, Elsevier, vol. 356(C).
    8. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    9. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    10. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    11. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    12. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    13. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    14. Ni, Yulong & Xu, Jianing & Zhu, Chunbo & Pei, Lei, 2022. "Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model," Applied Energy, Elsevier, vol. 305(C).
    15. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    16. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    17. Qiao, Dongdong & Wang, Xueyuan & Lai, Xin & Zheng, Yuejiu & Wei, Xuezhe & Dai, Haifeng, 2022. "Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method," Energy, Elsevier, vol. 243(C).
    18. Lai, Xin & Zhou, Long & Zhu, Zhiwei & Zheng, Yuejiu & Sun, Tao & Shen, Kai, 2023. "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, Elsevier, vol. 274(C).
    19. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    20. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2138-:d:351867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.