IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2548-d359485.html
   My bibliography  Save this article

A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks

Author

Listed:
  • Angelo Bonfitto

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy)

Abstract

This paper proposes a method for the combined estimation of the state of charge (SOC) and state of health (SOH) of batteries in hybrid and full electric vehicles. The technique is based on a set of five artificial neural networks that are used to tackle a regression and a classification task. In the method, the estimation of the SOC relies on the identification of the ageing of the battery and the estimation of the SOH depends on the behavior of the SOC in a recursive closed-loop. The networks are designed by means of training datasets collected during the experimental characterizations conducted in a laboratory environment. The lithium battery pack adopted during the study is designed to supply and store energy in a mild hybrid electric vehicle. The validation of the estimation method is performed by using real driving profiles acquired on-board of a vehicle. The obtained accuracy of the combined SOC and SOH estimator is around 97%, in line with the industrial requirements in the automotive sector. The promising results in terms of accuracy encourage to deepen the experimental validation with a deployment on a vehicle battery management system.

Suggested Citation

  • Angelo Bonfitto, 2020. "A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks," Energies, MDPI, vol. 13(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2548-:d:359485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    2. Miaomiao Zeng & Peng Zhang & Yang Yang & Changjun Xie & Ying Shi, 2019. "SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented Kalman Filtering Algorithm," Energies, MDPI, vol. 12(16), pages 1-15, August.
    3. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    4. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    5. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shailesh Hegde & Angelo Bonfitto & Renato Galluzzi & Luis M. Castellanos Molina & Nicola Amati & Andrea Tonoli, 2023. "Equivalent Consumption Minimization Strategy Based on Belt Drive System Characteristic Maps for P0 Hybrid Electric Vehicles," Energies, MDPI, vol. 16(1), pages 1-21, January.
    2. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
    4. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    5. Ethelbert Ezemobi & Mario Silvagni & Ahmad Mozaffari & Andrea Tonoli & Amir Khajepour, 2022. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions," Energies, MDPI, vol. 15(3), pages 1-20, February.
    6. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    7. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    8. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    9. Sumukh Surya & Vidya Rao & Sheldon S. Williamson, 2021. "Comprehensive Review on Smart Techniques for Estimation of State of Health for Battery Management System Application," Energies, MDPI, vol. 14(15), pages 1-22, July.
    10. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    12. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    4. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    6. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
    7. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    8. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    9. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    10. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    11. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    12. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    13. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    14. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    15. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    16. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    17. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    18. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    19. Di Battista, D. & Cipollone, R., 2016. "Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil," Applied Energy, Elsevier, vol. 162(C), pages 570-580.
    20. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2548-:d:359485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.