IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p3005-d254634.html
   My bibliography  Save this article

Model-Based Condition Monitoring of a Vanadium Redox Flow Battery

Author

Listed:
  • Shujuan Meng

    (School of Space and Environment, Beihang University, Beijing 100191, China)

  • Binyu Xiong

    (School of Automation, Wuhan University of Technology, Wuhan 430072, China)

  • Tuti Mariana Lim

    (School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore)

Abstract

The safe, efficient and durable utilization of a vanadium redox flow battery (VRB) requires accurate monitoring of its state of charge (SOC) and capacity decay. This paper focuses on the unbiased model parameter identification and model-based monitoring of both the SOC and capacity decay of a VRB. Specifically, a first-order resistor-capacitance (RC) model was used to simulate the dynamics of the VRB. A recursive total least squares (RTLS) method was exploited to attenuate the impact of external disturbances and accurately track the change of model parameters in realtime. The RTLS-based identification method was further integrated with an H-infinity filter (HIF)-based state estimator to monitor the SOC and capacity decay of the VRB in real-time. Experiments were carried out to validate the proposed method. The results suggested that the proposed method can achieve unbiased model parameter identification when unexpected noises corrupt the current and voltage measurements. SOC and capacity decay can also be estimated accurately in real-time without requiring additional open-circuit cells.

Suggested Citation

  • Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3005-:d:254634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/3005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/3005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Zhongbao & Meng, Shujuan & Xiong, Binyu & Ji, Dongxu & Tseng, King Jet, 2016. "Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer," Applied Energy, Elsevier, vol. 181(C), pages 332-341.
    2. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    3. Li, Xiangrong & Xiong, Jing & Tang, Ao & Qin, Ye & Liu, Jianguo & Yan, Chuanwei, 2018. "Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery," Applied Energy, Elsevier, vol. 211(C), pages 1050-1059.
    4. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    5. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    6. Xinan Zhang & Yifeng Li & Maria Skyllas-Kazacos & Jie Bao, 2016. "Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics," Energies, MDPI, vol. 9(10), pages 1-20, October.
    7. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    8. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammed Samil Yesilyurt & Huseyin Ayhan Yavasoglu, 2023. "An All-Vanadium Redox Flow Battery: A Comprehensive Equivalent Circuit Model," Energies, MDPI, vol. 16(4), pages 1-14, February.
    2. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    2. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    3. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
    5. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    6. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    7. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
    9. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    11. Jiang, H.R. & Zeng, Y.K. & Wu, M.C. & Shyy, W. & Zhao, T.S., 2019. "A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 240(C), pages 226-235.
    12. Ana-Irina Stroe & Jinhao Meng & Daniel-Ioan Stroe & Maciej Świerczyński & Remus Teodorescu & Søren Knudsen Kær, 2018. "Influence of Battery Parametric Uncertainties on the State-of-Charge Estimation of Lithium Titanate Oxide-Based Batteries," Energies, MDPI, vol. 11(4), pages 1-19, March.
    13. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    14. Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
    15. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    16. Jiang, H.R. & Shyy, W. & Ren, Y.X. & Zhang, R.H. & Zhao, T.S., 2019. "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 544-553.
    17. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    18. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    19. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3005-:d:254634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.