IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7206-d670460.html
   My bibliography  Save this article

Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge

Author

Listed:
  • Sungwoo Jo

    (Semiconductor MCE Technology Center, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea)

  • Sunkyu Jung

    (Semiconductor MCE Technology Center, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea)

  • Taemoon Roh

    (Semiconductor MCE Technology Center, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea)

Abstract

Because lithium-ion batteries are widely used for various purposes, it is important to estimate their state of health (SOH) to ensure their efficiency and safety. Despite the usefulness of model-based methods for SOH estimation, the difficulties of battery modeling have resulted in a greater emphasis on machine learning for SOH estimation. Furthermore, data preprocessing has received much attention because it is an important step in determining the efficiency of machine learning methods. In this paper, we propose a new preprocessing method for improving the efficiency of machine learning for SOH estimation. The proposed method consists of the relative state of charge (SOC) and data processing, which transforms time-domain data into SOC-domain data. According to the correlation analysis, SOC-domain data are more correlated with the usable capacity than time-domain data. Furthermore, we compare the estimation results of SOC-based data and time-based data in feedforward neural networks (FNNs), convolutional neural networks (CNNs), and long short-term memory (LSTM). The results show that the SOC-based preprocessing outperforms conventional time-domain data-based techniques. Furthermore, the accuracy of the simplest FNN model with the proposed method is higher than that of the CNN model and the LSTM model with a conventional method when training data are small.

Suggested Citation

  • Sungwoo Jo & Sunkyu Jung & Taemoon Roh, 2021. "Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge," Energies, MDPI, vol. 14(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7206-:d:670460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Florian Rzepka & Philipp Hematty & Mano Schmitz & Julia Kowal, 2023. "Neural Network Architecture for Determining the Aging of Stationary Storage Systems in Smart Grids," Energies, MDPI, vol. 16(17), pages 1-20, August.
    3. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    4. Ephrem Chemali & Phillip J. Kollmeyer & Matthias Preindl & Youssef Fahmy & Ali Emadi, 2022. "A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles," Energies, MDPI, vol. 15(3), pages 1-15, February.
    5. Edoardo Lelli & Alessia Musa & Emilio Batista & Daniela Anna Misul & Giovanni Belingardi, 2023. "On-Road Experimental Campaign for Machine Learning Based State of Health Estimation of High-Voltage Batteries in Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-21, June.
    6. Mona Faraji Niri & Jimiama Mafeni Mase & James Marco, 2022. "Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    2. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    3. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Roman Gozdur & Tomasz Przerywacz & Dariusz Bogdański, 2021. "Low Power Modular Battery Management System with a Wireless Communication Interface," Energies, MDPI, vol. 14(19), pages 1-20, October.
    5. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    6. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    7. Aneta Wysokińska-Senkus, 2021. "Determinants of Improving the Strategy of Sustainable Energy Management of Building Sustainable Value for Stakeholders—Experience of Organizations in Poland," Energies, MDPI, vol. 14(10), pages 1-18, May.
    8. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Angelo Bonfitto, 2020. "A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks," Energies, MDPI, vol. 13(10), pages 1-13, May.
    10. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Sergi Obrador Rey & Juan Alberto Romero & Lluis Trilla Romero & Àlber Filbà Martínez & Xavier Sanchez Roger & Muhammad Attique Qamar & José Luis Domínguez-García & Levon Gevorkov, 2023. "Powering the Future: A Comprehensive Review of Battery Energy Storage Systems," Energies, MDPI, vol. 16(17), pages 1-21, September.
    13. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    14. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    15. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    16. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.
    17. Chen, Mingyi & Zhu, Minghao & Zhao, Luyao & Chen, Yin, 2024. "Study on thermal runaway propagation inhibition of battery module by flame-retardant phase change material combined with aerogel felt," Applied Energy, Elsevier, vol. 367(C).
    18. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
    19. Jiang, Bo & Tao, Siyi & Wang, Xueyuan & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "Mechanics-based state of charge estimation for lithium-ion pouch battery using deep learning technique," Energy, Elsevier, vol. 278(PA).
    20. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7206-:d:670460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.