IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2405-d356790.html
   My bibliography  Save this article

Optimization of Operating Parameters for Stable and High Operating Performance of a GDI Fuel Injector System

Author

Listed:
  • Wen-Chang Tsai

    (School of Mechanical and Electrical Engineering, Xiamen University Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China)

Abstract

In this study, a novel injector driving circuit was developed to achieve the regulation of fuel injection quantity and to work with the engine control system in a vehicle. The main purpose of the proposed injector driving circuit is to control the quantity and timing of fuel injection within the gasoline direct injection (GDI) fuel injector system. In this paper, a mathematical state model of a high-pressure (H.P.) fuel injector system is derived and the improved Taguchi method is proposed to define the optimal operating parameter settings of a fuel injector system. The experiments on fuel injection quantity were performed to achieve the requirements of the injector driving circuit. The fuel quantity sprayed from a fuel injector system under these control parameters was analyzed by leading the design of experiments. The S/N and β slopes were analyzed to determine their optimal control settings. The H.P. injector driving circuit developed was designed to drive the fuel injector and spray the injected quantity of fuel into the flask following the optimized control factors. The experimental results demonstrate that the H.P. fuel injecting system exhibits better and more stable operating performance, to assure the accurate injection quantity for the GDI injector, and it was also realized with low cost metal oxide semiconductor field effect transistor (MOSFET) switches.

Suggested Citation

  • Wen-Chang Tsai, 2020. "Optimization of Operating Parameters for Stable and High Operating Performance of a GDI Fuel Injector System," Energies, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2405-:d:356790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    2. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    2. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    2. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    3. Kangjin Kim & Wonyong Chung & Myungsoo Kim & Charyung Kim & Cha-Lee Myung & Simsoo Park, 2020. "Inspection of PN, CO 2 , and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes," Energies, MDPI, vol. 13(10), pages 1-17, May.
    4. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    5. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    6. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    7. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    8. Mingfei Mu & Xinghu Li & Yong Qiu & Yang Shi, 2019. "Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug," Energies, MDPI, vol. 12(11), pages 1-19, May.
    9. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    10. Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
    11. Wang, Chongming & Zeraati-Rezaei, Soheil & Xiang, Liming & Xu, Hongming, 2017. "Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain," Applied Energy, Elsevier, vol. 191(C), pages 603-619.
    12. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    13. Francesco Catapano & Silvana Di Iorio & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2022. "Measurement of Sub-23 nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies," Energies, MDPI, vol. 15(6), pages 1-14, March.
    14. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    15. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    16. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    17. Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
    18. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    19. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    20. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2405-:d:356790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.