IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3330-d378242.html
   My bibliography  Save this article

Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas

Author

Listed:
  • Łukasz Warguła

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Mateusz Kukla

    (Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Piotr Lijewski

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Michał Dobrzyński

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

  • Filip Markiewicz

    (Institute of Internal Combustion Engines and Drives, Faculty of Civil Engineering and Transport, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland)

Abstract

This paper discusses the determination of fuel consumption and exhaust gas emissions when shredding branches in urban areas. It aimed to determine the hourly emission of exhaust gases to the atmosphere during such work and to identify the designs that can reduce it. The research was carried out with a cylinder woodchipper driven by a low-power (9.5 kW) combustion engine. There were three configurations of the tested drive unit: The factory setting (A) with a carburettor fuel supply system, modernized by us to include an electronic injection system (B). This system (B) was expanded with an adaptation system patented by the authors (P. 423369), thus creating the third configuration (C). The research was carried out when shredding cherry plum ( Prunus cerasifera Ehrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender 4:189-204. 1784)) branches with a diameter of 80 mm, which presented a large load for the machine. The machine was operated by one experienced operator. The average operating conditions during the tests were as follows: Branch delivery frequency of about 4 min −1 and mass flow rate of about 0.72 t h −1 . During the tests with the use of PEMS (portable emissions measurement system, here Axion RS from Global MRV), we analyzed the emissions of compounds, such as CO, CO 2 , HC, and NO x , and determined the fuel consumption based on the carbon balance. The research showed that the use of an injection system (B) reduced fuel consumption from 1.38 to 1.29 l h −1 (by 6.7%) when compared to the carburettor system (A). Modernization of the injection system (B) with an adaptive system (C) reduced fuel consumption from 1.38 to 0.91 l h −1 (by 34%) when compared to the carburettor system (A). An hour of shredding with a cylinder chopper emits the following amounts of flue gases: design A (HC 0.013 kg h −1 ; CO 0.24 kg h −1 ; CO 2 2.91 kg h −1 ; NO x 0.0036 kg h −1 ), design B (HC 0.0061 kg h −1 ; CO 0.20 kg h −1 ; CO 2 2.77 kg h −1 ; NO x 0.0038 kg h −1 ), and design C (HC 0.017 kg h −1 ; CO 0.22 kg h −1 ; CO 2 1.79 kg h −1 ; NO x 0.0030 kg h −1 ). The adaptive system entails significant reductions in non-HC emissions, which indicates that the system needs to be improved with respect to fuel-air mixture control for its enrichment of the low-to-high-speed change. The admissible emission limits for harmful compounds in exhaust gas for the tested group of propulsion units are in accordance with the provisions in force in the European Union from 2019 for the tested propulsion units during operation, with a full CO load about 6100 g h −1 and HC + NO x about 80 g h −1 . The tested propulsion units emitted significantly less pollution under real operating conditions (because they did not work under full load throughout the entire test sample).

Suggested Citation

  • Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3330-:d:378242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Michael D. Noel, 2019. "Calendar synchronization of gasoline price increases," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 28(2), pages 355-370, April.
    3. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    4. Ralf Pecenka & Hannes Lenz & Simeon Olatayo Jekayinfa & Thomas Hoffmann, 2020. "Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    5. Lichter, Andreas & Pestel, Nico & Sommer, Eric, 2017. "Productivity effects of air pollution: Evidence from professional soccer," Labour Economics, Elsevier, vol. 48(C), pages 54-66.
    6. Salman Abdu Ahmed & Song Zhou & Yuanqing Zhu & Asfaw Solomon Tsegay & Yoming Feng & Naseem Ahmad & Adil Malik, 2020. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines," Energies, MDPI, vol. 13(4), pages 1-23, February.
    7. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    8. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    9. Wen-Chang Tsai, 2020. "Optimization of Operating Parameters for Stable and High Operating Performance of a GDI Fuel Injector System," Energies, MDPI, vol. 13(10), pages 1-22, May.
    10. Le Boennec, Rémy & Salladarré, Frédéric, 2017. "The impact of air pollution and noise on the real estate market. The case of the 2013 European Green Capital: Nantes, France," Ecological Economics, Elsevier, vol. 138(C), pages 82-89.
    11. Jinxi Zhou & Song Zhou & Yuanqing Zhu, 2017. "Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology," Energies, MDPI, vol. 10(8), pages 1-14, July.
    12. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    13. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    14. Rahman, Sajjadur, 2016. "Another perspective on gasoline price responses to crude oil price changes," Energy Economics, Elsevier, vol. 55(C), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beáta Stehlíková & Katarína Čulková & Marcela Taušová & Ľubomír Štrba & Eva Mihaliková, 2021. "Evaluation of Communal Waste in Slovakia from the View of Chosen Economic Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    5. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
    6. Łukasz Warguła & Piotr Kaczmarzyk, 2022. "Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review," Energies, MDPI, vol. 15(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    4. Kwang-Il Kim & Keon Myung Lee, 2018. "Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction," Energies, MDPI, vol. 11(5), pages 1-15, May.
    5. Hu, Shuya & Wang, Shengnian, 2024. "Does air pollution affect the accrual anomaly in the Chinese capital market? From the perspective of investment adjustment strategy," Research in International Business and Finance, Elsevier, vol. 69(C).
    6. Timothy J. Halliday & Rachel Inafuku & Lester Lusher & Aureo de Paula, 2022. "VOG: Using Volcanic Eruptions to Estimate the Impact of Air Pollution on Student Learning Outcomes," Working Papers 202203, University of Hawaii at Manoa, Department of Economics.
    7. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    8. D. O. Olayungbo & T. A. Ojeyinka, 2022. "Crude oil prices pass-through to retail petroleum product prices in Nigeria: evidence from hidden cointegration approach," Economic Change and Restructuring, Springer, vol. 55(2), pages 951-972, May.
    9. Butler, David & Butler, Robert & Farnell, Alex & Simmons, Robert, 2024. "COVID-19 infections and short-run worker performance: Evidence from European football," European Journal of Operational Research, Elsevier, vol. 315(2), pages 750-763.
    10. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    11. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    12. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    13. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    14. Guo, Liwen & Cheng, Zhiming & Tani, Massimiliano & Cook, Sarah & Zhao, Jiaqi & Chen, Xi, 2022. "Air Pollution and Entrepreneurship," GLO Discussion Paper Series 1196, Global Labor Organization (GLO).
    15. Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
    16. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    17. Aloys Prinz & David J. Richter, 2021. "Feinstaubbelastung und Lebenserwartung in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 15(3), pages 237-272, December.
    18. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.
    19. Joris Klingen & Jos Ommeren, 2022. "Risk-Taking and Air Pollution: Evidence from Chess," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 73-93, January.
    20. Brox, Enzo & Krieger, Tommy, 2022. "Birthplace diversity and team performance," Labour Economics, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3330-:d:378242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.