IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p176-d303785.html
   My bibliography  Save this article

The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard

Author

Listed:
  • Mihai Rata

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Gabriela Rata

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Constantin Filote

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Maria Simona Raboaca

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
    National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI, 240050 Rm. Valcea, Romania)

  • Adrian Graur

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Ciprian Afanasov

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Andreea-Raluca Felseghi

    (Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

Abstract

As fuel consumption in the transport sector has increased at a faster pace than in other sectors, the use of electromobility represents the main strategy adopted by the automotive industry. In this context, as the number of electrical vehicles (EVs) will increase, it will also be necessary to increase the number of charging stations. The present paper presents a complete solution for charging stations that can be located in the office or mall parking area. This solution includes a mode 3 AC charging stations of International Electrotechnical Commission (IEC) 61851-1 Standard, an EV simulator for testing the good functionality of the charging stations (i.e., communications, residual-current device (RCD) protection) and a software application used for controlling the charging process by the programmable logic controller (PLC).

Suggested Citation

  • Mihai Rata & Gabriela Rata & Constantin Filote & Maria Simona Raboaca & Adrian Graur & Ciprian Afanasov & Andreea-Raluca Felseghi, 2019. "The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard," Energies, MDPI, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:176-:d:303785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    2. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    3. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    4. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    5. Bizon, Nicu & Thounthong, Phatiphat, 2018. "Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1089-1102.
    6. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    7. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    8. Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
    9. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeshwar Mahanta, 2018. "Impact of Electric Vehicle Charging Station Load on Distribution Network," Energies, MDPI, vol. 11(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olcay Bay & Manh Tuan Tran & Mohamed El Baghdadi & Sajib Chakraborty & Omar Hegazy, 2023. "A Comprehensive Review of GaN-Based Bi-directional On-Board Charger Topologies and Modulation Methods," Energies, MDPI, vol. 16(8), pages 1-45, April.
    2. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayank Jha & Frede Blaabjerg & Mohammed Ali Khan & Varaha Satya Bharath Kurukuru & Ahteshamul Haque, 2019. "Intelligent Control of Converter for Electric Vehicles Charging Station," Energies, MDPI, vol. 12(12), pages 1-25, June.
    2. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    3. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    4. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    5. Irfan Ullah & Muhammad Safdar & Jianfeng Zheng & Alessandro Severino & Arshad Jamal, 2023. "Employing Bibliometric Analysis to Identify the Current State of the Art and Future Prospects of Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-24, February.
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    7. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    8. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    9. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    10. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    11. Abood Mourad & Martin Hennebel & Ahmed Amrani & Amira Ben Hamida, 2021. "Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network," Energies, MDPI, vol. 14(9), pages 1-20, April.
    12. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    13. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    15. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    16. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    17. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Praveen Prakash Singh & Fushuan Wen & Ivo Palu & Sulabh Sachan & Sanchari Deb, 2022. "Electric Vehicles Charging Infrastructure Demand and Deployment: Challenges and Solutions," Energies, MDPI, vol. 16(1), pages 1-21, December.
    19. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    20. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:176-:d:303785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.